581 259 259

7 77 /

DETERMINATION OF SOME GEOMETRIC RELATIONSHIPS PERTAINING TO COLLISION FLIGHT PATHS

by

Wayne D Howell

and

Thomas M Edwards

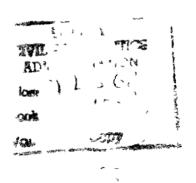
Aircraft Division

Technical Development Report No. 259

CIVIL AERONAUTICS ADMINISTRATION
TECHNICAL DEVELOPMENT AND
EVALUATION CENTER
INDIANAPOLIS, INDIANA

June 1955

U S DEPARTMENT OF COMMERCE Sinclair Weeks, Secretary


CIVIL AERONAUTICS ADMINISTRATION

F. B Lee, Administrator

D M Stuart, Director, Technical Development and Evaluation Center

TABLE OF CONTENTS

	Page
SUMMARY	1
INTRODUCTION	1
GENERAL PRESENTATION AND LIMITATIONS OF BASIC DATA	2
COLLISION CONDITION A STRAIGHT-AND-LEVEL FLIGHT	3
COLLISION CONDITION B STRAIGHT CLIMB AND DESCENT	9
COLLISION CONDITION C ONE AIRPLANE TURNING AND ONE FLYING STRAIGHT	
AND LEVEL	16
COLLISION CONDITION D TWO AIRPLANES TURNING IN THE SAME DIRECTION	39
CONCLUSIONS	105
ACKNOWLEDGEMENTS	105
APPENDIX I, DERIVATION OF FORMU LAS	106
APPENDIX II, FLIGHT-PATH ANALYSIS	120

This is a technical information report and does not necessarily represent CAA policy in all respects

DETERMINATION OF SOME GEOMETRIC RELATIONSHIPS PERTAINING TO COLLISION FLIGHT PATHS*

SUMMARY

A study has been made to develop a basic means, in the form of graphs and charts, for permitting a better understanding of cockpit visual problems and aircraft conspicuity problems as they are related to mid-air collisions

Formulas are derived and visual-angle and distance charts are presented for certain combinations of straight-and-level, climbing, descending, and turning flight conditions. Using only aircraft headings and speeds, the visual angles and distances between aircraft at assumed instances of time prior to collision may be determined from these charts. It is also possible to obtain critical collision-course headings by entering the charts with the effective cockpit cut-off vision angles and speeds.

Tables are presented showing actual airplane attitudes during flight

Actual flight paths recorded in the vicinity of airports are presented. Some performance parameters used in the design of the visual-angle charts contained in this report were established from these flight-path data.

From the graphs contained in this report, it is evident that

l No apparent motion from pilots' viewpoints exists between two aircraft which are flying straight and level on collision courses at constant speeds

- 2 The most severe mid-air collision hazard from a visual-angle standpoint exists between aircraft that are flying at small differences of heading and speed. During this condition, even when the closing rates are small and much time is available for evasive maneuver, the visual-angle restrictions of present-day transport aircraft do not permit the pilots to observe each other.
- 3 Mid-air collisions cannot be avoided by use of the windshield area alone, since extreme visual angles may be required during many collision conditions. However, certain minimum visual angles in aircraft-cockpit design will tend to decrease the probability of mid-air collisions.

INTRODUCTION

The danger of aircraft colliding in mid-air is becoming increasingly serious as speeds nd traffic densities increase. Cockpit visibility angles, or angles of vision required by the pilot of one aircraft to see another aircraft, and pilot alertness are two major factors in mid-air collisions. Another major factor is the conspicuity of aircraft.

During 1948, the Technical Development and Evaluation Center of the Civil Aeronautics Administration commenced an investigation of the cockpit-visibility problem. Since that time, much work has been accomplished and reported 1,2,3 in an effort to arrive at a basis for establishing minimum cockpit-visibility standards for aircraft and thus to improve the safety of aircraft.

^{*}Manuscript submitted for publication December 1954

George L Pigman and Thomas M Edwards, "Airline Pilot Questionnaire Study on Cockpit Visibility Problems," CAA Technical Development Report No. 123, September 1950

²Thomas M Edwards, "Development of an Instrument for Measuring Aircraft Cockpit isibility Limits," CAA Technical Development Report No. 153, January 1952

Thomas M Edwards and Wayne D Howell, "A Study of Pilots' Eye Movements During Visual Flight Conditions," CAA Technical Development Report No. 179, June 1952

Since 1938, development activities designed for the improvement of aircraft conspicuity have been in progress To date, these have chiefly involved external aircraft lighting technical reports covering this work have been published 4,5

Continued work in these fields of cockpit visibility and aircraft conspicuity requires the solution of equations showing the relationship that exists among the fundamental parameters of aircraft in flight on collision courses

The ultimate objective of this report is to present a simple means of calculating cockpit visual angles and distance-time separation as they are related to collision courses. In order to accomplish this task, a series of formulas was developed. From these formulas, charts and nomographs were designed to simplify and facilitate their solutions

The information and data of this report are presented as follows

Collision Condition A - Straight-and-Level Flight

Collision Condition B - Straight Climb and Descent

Collision Condition C - One Aircraft Turning and One Flying Straight and Level

Collision Condition D - Two Aircraft Turning in Same Direction

Graphical presentations covering two aircraft turning in opposite directions were found to vary over such wide limits that it was preferable to achieve solutions by the use of the equations rather than by graphical methods These equations are presented in the Appendix

Each collision condition is discussed separately and is presented to conform to the following outline

- Description
 Procedure and Formulas
 Sample Solution
 Additional Considerations
- 5 Discussion of Significant Trends

The derivation of the formulas and the actual measured flight paths in the vicinity of airports are presented in the Appendix

This report is limited to a study of collision courses. It is primarily intended to serve as a basic tool to aid in the solution of cockpit-vision and aircraft-conspicuity problems from the standpoint of collision avoidance. Its intended utility also includes investigations of mid-air collision accidents

GENERAL PRESENTATION AND LIMITATIONS OF BASIC DATA

Charts were drawn to facilitate the calculation of the visual angles required for the pilots of each of two aircraft on a collision course to see the other aircraft. The charts are designed to encompass a wide range of aircraft speeds and collision approach angles, and it is assumed that the aircraft are point sources. It is also possible to determine the distance separating two airplanes at any particular instant of time prior to collision

Charts for determining separation distances and visual angles were drawn for the most common collision courses Simple charts shown in Figs 1, 2, and 3 cover straight-and-level flight conditions Charts for climbing and descending conditions are shown in Figs 1, 2, 5, and 6 A more complicated system of charts is presented for computation of distance of separation and visual angles from aircraft, one of which is flying straight and level and one of which is turning, and also from aircraft which are both turning. These families of charts are shown in Figs. 10 through 21 and 28 through 82, respectively. In all cases, sample calculations showing the manner in which the charts are used are presented

 $^{^4}$ Cecil B Phillips and Alan L Morse, "A Review of Aircraft External Lighting Activities, CAA Technical Development Report No 215, September 1953

Marvin J Anderson and Cecil B Phillips, "Development of Blade Tip Lighting," CAA Technical Development Report No 248, October 1954

It was possible to limit the coverage of the charts for straight-and-level, climbing, and descending flight by the assumption of logical limits for the data. However, it was much more difficult to establish practical parameters for the turning conditions of flight. The limits for turning flight were therefore established from recordings of 250 flight paths of aircraft in the vicinity of airports. These flight-path data are shown in the Appendix. The collision cases presented in this report are designed around the assumption that the airplanes are flying at constant speeds, constant rates of climb or descent, and constant angles of bank during level turns, as these conditions are applicable. By necessity, the collision conditions covered by 's report constitute only a small part of the total number of possible collision cases

In using this report as a tool for determining the visual angles required for the pilot of one airplane to see the other airplane and determining the distances between airplanes, the couracy of the results obtained will sometimes be limited by the authenticity of the input parameters rather than by the design of the charts themselves. If it is found that none of the collision cases represented in this report apply exactly to the one being investigated, the selection of the collision case that is most similar will provide approximate visual-angle requirements

COLLISION CONDITION A STRAIGHT-AND-LEVEL FLIGHT

Description

Calculation of visual angles to the right or left required for the pilots of each airplane to see the other airplane is facilitated by the use of the charts designed for the straight-and-level flight condition. These charts are designed around the hypothesis that two airplanes are flying along straight lines and on a collision course in the same horizontal plane and that they are approaching each other from any direction at any relative speed.

Procedure and Formulas

The level-cruise charts are shown in Figs. 1, 2, and 3. The procedure for using these charts is as follows

- 1 To determine speed relationship A, enter Fig. 1 with the true air speeds of the two ircraft. A is simply the ratio of the speed of the slower airplane to the speed of the faster irplane.
- 2 To determine visual angles θ (for the faster airplane) and ϕ (for the slower airplane) t which it is possible for the pilot of each aircraft to see the other aircraft, enter Fig. 2 with he absolute difference in the true headings ψ , and the value of A.
- 3 To determine the distance Z between the airplanes at any instant of time prior to collision, enter Fig. 3 with the velocity $V_{\rm S}$ of the slower airplane, time t before collision, the
- ' 'e difference in true heading ψ , and the visual angle θ required from the faster airplane 4. To determine closing velocity between the two aircraft, enter Fig. 3 with the distance Z ' tween the aircraft and the time t before collision
- 5 To determine the blind areas caused by specific cockpit cutoff angles of any two aircraft, enter the chart shown in Fig. 2 with the visibility cutoff angle of the slower airplane, proceed
- rd to the intersection of the relative speed A in question, and follow up the diagonal line to ψ absolute difference in true heading. This value of ψ will be the minimum absolute difference in heading of the two aircraft that will permit them to be visible to each pilot

The speed-relationship chart shown in Fig. 1 is presented for the convenience of the reader and is constructed to permit a speed relationship value to be obtained for any speeds as long as the same scale is used on both axes. This chart was constructed from the equation

$$A = \frac{v_s}{v_f} \tag{1}$$

Where

A = Speed relationship

V = Velocity of slower airplane, true air speed, in mph

V = Velocity of faster airplane, true air speed, in mph

The visual-angle chart shown in Fig 2 for straight-and-level flight was constructed by substituting example values in Equation (2).

$$\theta = \arcsin \left(\frac{A \sin \Psi}{\sqrt{A^2 + 1 - 2A \cos \Psi}} \right)$$
 (2)*

and $\phi = 180^{\circ} - (\psi + \theta)$

Where

θ = Visual angle from longitudinal axis required from fast airplane, in degrees

φ = Visual angle from longitudinal axis required from slow airplane, in degrees

A = Speed relationship (Fig. 1)

The distance-of-separation nomograph shown in Fig. 3 was constructed by using Equation (3)

$$Z = \frac{V_s t \sin \psi}{60 \sin \theta} \tag{3}$$

Where

V = Velocity of slower airplane, true air speed, in mph

t = Time of investigation before collision, in minutes

 Ψ = Absolute difference in true heading of two airplanes, in degrees

0 = Visual angle required from faster airplane, in degrees

Z = Distance between airplanes at time t of investigation, in miles

Sample Solution

It is desired to know the visual angles that are required for the pilots of each of two aircraft to see the other aircraft while on a collision course and to determine the distance between them at a given time t. Refer to Fig. 4. In this case, both airplanes are flying straig' and level

Given

V = 180 mph, velocity of slower airplane, true air speed

V_f = 200 mph, velocity of faster airplane, true air speed

^{*}Equations (2) through (6), (8) through (14), (16), and (20) through (29) have their derivations in the Appendix.

 ψ = 45°, absolute difference in true heading of two aircraft

n this case, assume that the slower aircraft is on the left of the faster aircraft

= 1 minute, time of investigation before collision

olution

- 1 Enter Fig. 1 with $V_s = 180$ mph and $V_f = 200$ mph and determine the speed relationship $t_s = 0.90$
- 2 Enter the chart shown in Fig. 2 with the difference in true heading ψ = 45° and follow flown this diagonal line until an intersection is made with the speed-relationship curve A = 0.9. Follow the horizontal line from this point and read the angle 0 = 60°. This is the angle required for the pilot of the faster airplane to see the slower airplane. Follow the vertical ne from this point and read the angle ϕ = 75°. This is the angle required for the pilot of the lower airplane to see the faster airplane.
- 3 The distance between the two aircraft at t = 1 minute, or one minute before collision, is found by using the nomograph shown in Fig. 3
 - a Enter nomograph with $V_s = 180 \text{ mph}$
 - b Connect 180 to t = 1 minute, find T₁°
 - c. Connect T₁ intersection with ψ = 45° (absolute difference in true heading) and find T₂
 - d Connect T_2 intersection with $\theta = 60^{\circ}$ (visual angle required from the faster airplane)
 - e Read Z = 25 miles apart
- 4. The closing velocity at t=1, one minute before collision, is found by using the nomograph hown in Fig. 3
 - a Enter nomograph with Z = 25 miles
 - b Connect 2 5 to t = 1 minute
 - c Read $V_c = 220$ feet per second, or 150 mph

Additional Considerations

The formulas and charts are designed for using true air speed and true heading of the ircraft. In the event that the ground track and ground speeds are used, it is necessary to correct the visual angles by adding or subtracting the crab angle or wind-drift angle.

Discussion of Significant Trends

By inspecting the curves shown in Fig. 2, it is evident that the mid-air collision problem s greatest at small differences in heading and at small differences in speed. These are the conditions that make the chances of either pilot seeing the other airplane very small

Since time is not involved in obtaining visual angles from Fig. 2, it is evident that as the me from collision varies the visual angles obtained from this chart will remain constant hroughout the specific collision course being investigated. If the required visual angle remains constant, there is no relative motion between the airplanes flying on a straight-and-level collision course.

For any possible combination of speed relationship and absolute difference in heading that would result in a collision, the visual angle required from the faster airplane will always be ess than 90° while the visual angle required from the slower airplane could be as great as 180° These maximum visual angles do not occur at the same time

The locus line drawn on Fig. 2 indicates that the maximum visual angle required from the ister airplane occurs when a 90° visual angle is required from the slower airplane.

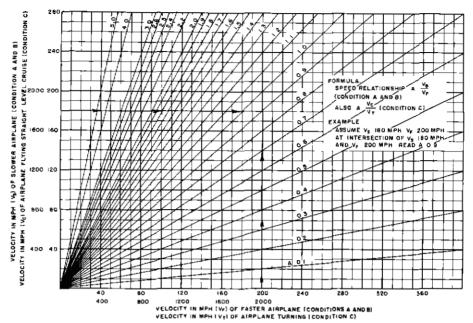


Fig 1 Determination of Speed Relationship

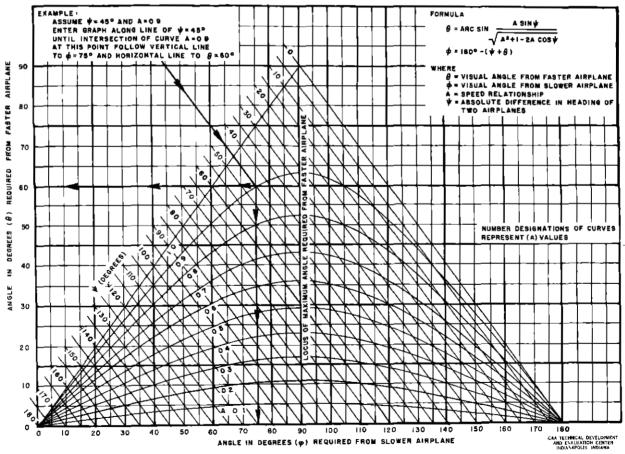
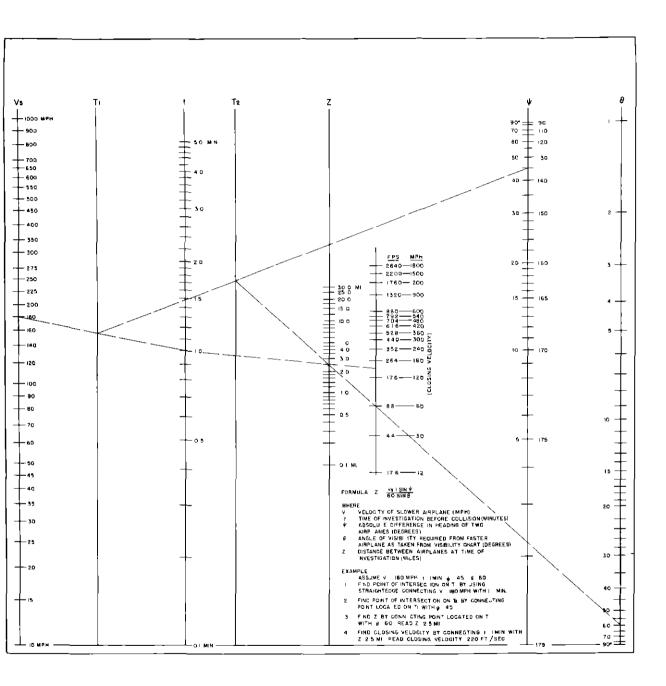



Fig 2 Horizontal Visual Angles Required From Two Airplanes for Level-Flight, Climb, and Descent Collision Conditions

6 TECHNICA DEVELOPMENT AND EN LUATION CENTER INGANAPOLIS INGIANA

Fig 3 Determination of Distance of Separation for Level-Flight Condition

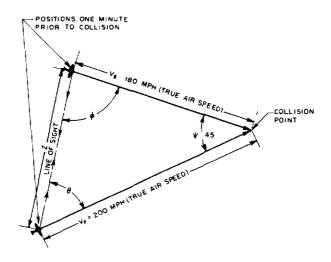


Fig 4 Vector Diagram of Sample Solution for Level-Flight Collision Condition

COLLISION CONDITION B STRAIGHT CLIMB AND DESCENT

Description

Calculation of visual angles to right or left and up or down for the pilots of each aircraft to see the other aircraft is facilitated by the use of the charts designed for the climb-and-descent condition. These charts are designed around the hypothesis that two airplanes are climbing or descending relative to one another and that they are approaching each other on straight courses from any direction at any relative speed.

Procedure and Formulas

The climb and descent charts are shown in Figs. 1, 2, 5, and 6. The procedure for using these charts is as follows

- 1 To determine speed relationship A, enter Fig. 1 with the true airspeeds of the two aircraft
- 2 To determine horizontal visual angles θ and ϕ required for the pilots of each aircraft to see the other aircraft, enter Fig. 2 with the absolute difference in true heading ψ and the value of A
- 3 To determine V, the projection upon the horizontal plane of the closing velocity (Fig. 8), enter Fig. 5 with horizontal visual angle θ required from faster airplane, velocity V_s of the slower airplane, and the absolute difference in true heading ψ
- 4 To determine the vertical angle ρ (which is measured from the horizon and is equal and opposite from each airplane), enter Fig 6 with the algebraic sum of the rate of change of altitudes between the two aircraft $\Delta_1 \pm \Delta_2$ and V, the projection upon the horizontal plane of the closing velocity
- 5 To determine the true vertical visual angle required, the fuselage attitude with respect to the horizon must be considered and the correction must be applied to the vertical angle ρ . The fuselage attitude with respect to the horizon during climb or descent varies with different airplanes. A listing of aircraft attitudes during climb or descent, as compiled from studies made at Indianapolis and Chicago airports, may be found on Table I. The data for this table were computed from photographs of the flight paths as illustrated in Fig. 7. These data are presented in order to obtain a sample of fuselage attitudes with respect to the horizon for different types of aircraft.
- 6 To determine the distance Z between the airplanes at any instant of time prior to collision, enter Fig. 5 with time t before collision, the vertical angle ρ , and V, the projection upon the horizontal plane of the closing velocity
- 7 To determine the closing velocity between the two aircraft, enter Fig 5 with the distance Z between aircraft and time t before collision

In determining the velocity V, the quantity needed for entering the vertical-angle chart (Fig. 6), the nomograph 6 shown in Fig. 5 was constructed by using Equation (4)

$$V = \frac{V_{S} \sin \psi}{\sin \theta} \tag{4}$$

Where

V = Vertical projection of the closing velocity upon the horizontal plane, in mph

 V_{c} = Velocity of the slower airplane, in mph

w = Absolute difference in true heading of the two aircraft, in degrees

0 = Horizontal visual angle required from the faster airplane, in degrees

⁶Lee H Johnson, "Nomography and Empirical Equations," John Wiley & Sons, Inc., New York, pp. 33-43, 1952

The vertical-angle chart, shown in Fig. 6, was constructed by substituting example values in the following equation

$$\rho = \arctan \frac{\Delta_1 + \Delta_2}{88V}$$
 (5)

Where

 Δ_1 or Δ_2 = Rate of climb or rate of descent of the respective airplanes, in feet per minute

\(\Delta \) 2 = The algebraic sum of the rate of change of altitude between the two airplanes, in feet per minute (If both \(\Delta \) 1 and \(\Delta \) 2 are rate of climb or if both are rate of descent, then a minus sign is used, for any other combination, a plus sign is used)

P = The vertical angle measured from the horizon, in degrees

V = Vertical projection of the closing velocity upon the horizontal plane, in mph

For determination of the distance between the aircraft at time t, Fig 5 was constructed by using Equation (6)

$$Z = \frac{Vt}{60 \cos \rho} \tag{6}$$

Where

V = Vertical projection of the closing velocity upon the horizontal plane, in mph

t = Time of investigation before collision, in minutes

P = Vertical angle, in degrees

Z = Distance between aircraft at time of investigation, in miles

Sample Solution

It is desired to know the visual angles that are required for the pilots of each aircraft to see the other aircraft while flying on a collision course and to determine the distance they are apart at a given time t. Refer to Fig. 8. In this case, one airplane is climbing and one is descending

V = 200 mph, the velocity (true air speed) of the slower airplane, which is climbing

 Δ_1 = 1220 fpm, the rate of climb

 V_{f} = 220 mph, the velocity (true air speed) of the faster airplane, which is descending

 $\Delta_2 = 2000$ fpm, the rate of descent

 ψ = 45°, the absolute difference in true heading of the two aircraft

In this case, the climbing airplane is approaching the descending airplane from the right

t = 0.5 minute, the time of investigation before collision

Solution

- 1 Enter Fig. 1 with $V_s = 200$ mph and $V_f = 220$ mph, and read A = 0.9
- 2 Enter horizontal-visual-angle chart, Fig. 2, with ψ = 45° and A = 09 Read θ = 60° right, the horizontal visual angle (measured from straight ahead of the pilot-eye position) required for the slower airplane to be seen from the faster airplane. Read ϕ = 75° left, the horizontal visual angle (measured from straight ahead of the pilot-eye position) required for the faster airplane to be seen from the slower airplane.
- 3 Enter nomograph, Fig. 5, with $\theta = 60^{\circ}$, $V_s = 200$ mph, and $\psi = 45^{\circ}$, and read V = 160 mph, the velocity needed for entering the vertical angle chart
- V = 160 mph, the velocity needed for entering the vertical-angle chart 4 Enter Fig. 6, the vertical-angle chart, with $\Delta_1 + \Delta_2 = 3220$ feet per minute, which is the rate of change of altitude added algebraically between the two aircraft, and V = 160 mph Read ρ = 13°, the vertical angle (measured from the horizon) required for either airplane to be seen from the other. The airplane descending would require 13° down from the horizon, and the airplane climbing would require 13° up from the horizon.
- 5 To determine the true vertical visual angle required from each airplane, the fuselage attitude with respect to the horizon must be considered

For example, if it is assumed that the fuselage of the airplane climbing is in a 2° nose-up attitude, then the true vertical visual angle required from this airplane with respect to the cockpit would be 13°-2°, or 11° up. Also, if it is assumed that the fuselage of the airplane descending is in a 5° nose-down attitude, then the true vertical visual angle required from airplane with respect to the cockpit would be 13°-5°, or 8° down. Table I, which shows a variety of attitudes compiled from photographic studies made of actual take-off and landing-approach flight paths at Indianapolis and Chicago airports, is presented for the convenience of the reader.

6 Enter nomograph, Fig. 5, with V = 160 mph, previously determined in Step 3. In this case, t = 0.5 minute and ρ = 13° Read Z = 1.40 miles, the distance between the airplanes at time = 0.5 minute. Note. There can be similar solutions for other conditions such as both aircraft climbing, both aircraft descending, one airplane flying level and one climbing, or one airplane flying level and one descending.

If the airplanes are climbing or descending on a difference in heading equal to 0° or 180°, the visual angles required from either airplane will be in the vertical plane only. This condition, then, becomes the same as Condition A, except that in this case the relative motion occurs in the vertical plane while in Condition A the relative motion occurs in the horizontal plane. If the vertical plane is rotated 90°, it becomes coincident with the horizontal plane, therefore, Condition B becomes hypothetically the same as Condition A and the visual-angle chart designed for Condition A can be used. In using this chart, the difference in heading in this condition is determined by the angle of climb or descent of each airplane.

Additional Considerations

The same additional considerations that were discussed in Condition A apply similarly to this collision condition

Discussion of Significant Trends

The trends discussed in Condition A apply similarly to this collision condition. The vertical-visual-angle requirements from both airplanes are greatest at small differences in heading and small differences in speed.

TABLE I

TYPICAL FLIGHT-PATH ANGLES AND FUSELAGELONGITUDINAL-AXIS ATTITUDES

Aircraft Type	Flight-Pa Relative t	ath Angle o Horizon	Fuselage Relative t	o Flight-	Fuselage Relative t	
	Takeoff (degrees)	Landing (degrees)	Path . Takeoff (degrees)	Landing (degrees)	Takeoff (degrees)	Landing (degrees,
Martin 404	+ 7 6 4 5 5 25 4 4 75 5 7 6 5	- 5 25 - 8 0 - 5 0 - 4 0 - 5 0 - 7 5 - 8 25	-6 -3 -4 5 -3 25 -2 5 -4 5 -4 0 -4 5 +2 5 +2 5	+0 75 -3 75 -4 25 -3 0 -4 0 -8 0 -3 5	+ 1 + 3 0 + 2 + 1 5 + 0 25 + 1 + 7 + 1 5 + 7 5 + 7 5	- 4 50 -11 75 - 9 25 - 7 0 - 9 0 -15 5 -11 75
Average	5 41	- 6 14	-2 48	-3 68	2 93	- 9 82
Convair 240	11 6 25 1 50 5 0	-10 - 4 - 5 - 5 75	+1 +1 0 +0 25	+1 -1 +1 0	12 7 25 1 5 5 25	- 9 - 5 - 4 - 5 75
Average	5 94	- 6 19	±0 56	+0 25	6 50	- 5 9 4
Douglas DC-3	4 5 5 25 1 5 4 0 4 0 4 5 4 0 2 0 4 0 3 75	- 4 0 - 6 0 - 5 5 - 6 0 - 5 5 - 5 - 5 - 5	0 0 -0 5 0 -2 0 -3 +3 ±3 5 2 5 0 39	+1 5 +2 0 2 75 0 0 0 +2 1 5 +1 22	4 5 5 25 1 0 4 0 2 0 1 5 7 0 5 5 6 5 +4 14	- 2 5 - 4 - 2 75 - 6 - 5 5 - 3 - 3 5
Lockheed Constellations	+ 3 + 4 + 5 + 6 + 4 5	- 5 - 5 5 - 5 25	-2 5 +1 0 +2 5 +0 25	-1 0 -6 0	+0 5 +5 +5 +8 5 4 75	- 6 0 -11 5 - 8 75
Douglas DC-4	5 5		+1 0		4 5	
Douglas DC-6 Average	3 5 4 + 3 7		0 3 5 +1 7		3 5 7 5 +5 5	
Beech D-18S	+ 5 0	- 4	-5 0	-2	0	- 60
Average	3 + 4	- 4	0 -2 5	-2	3 +1 5	- 6

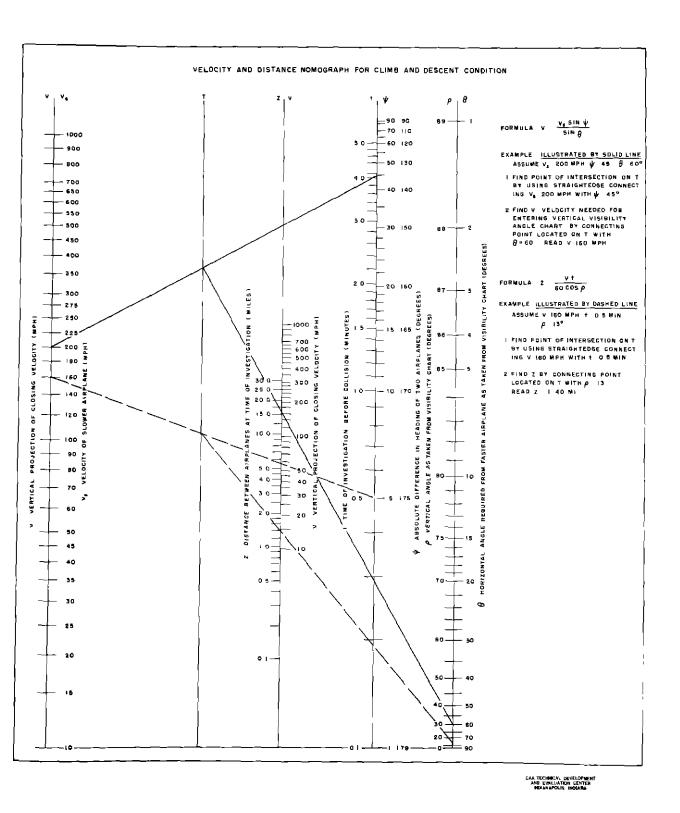


Fig 5 Determination of Velocity and Distance of Separation for Climb-and-Descent Conditions

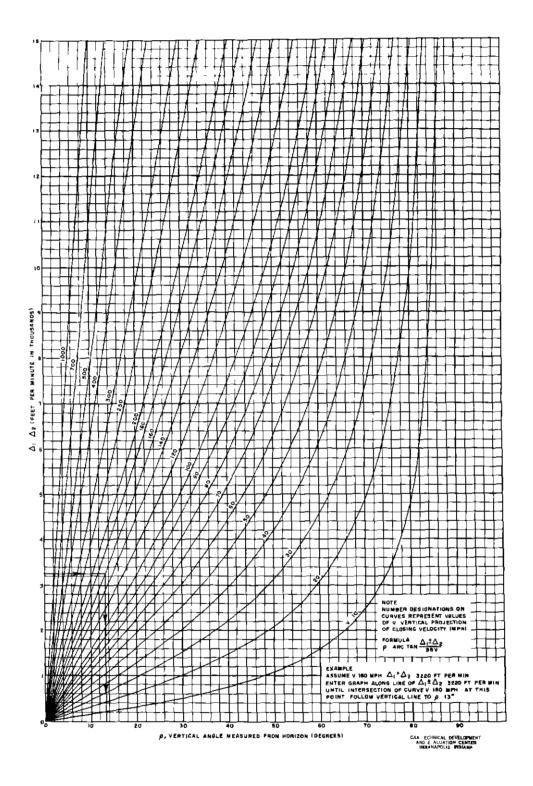


Fig 6 Vertical Angle, Measured From Horizon, Required From Two Airplanes for Climb-and-Descent Collision Condition

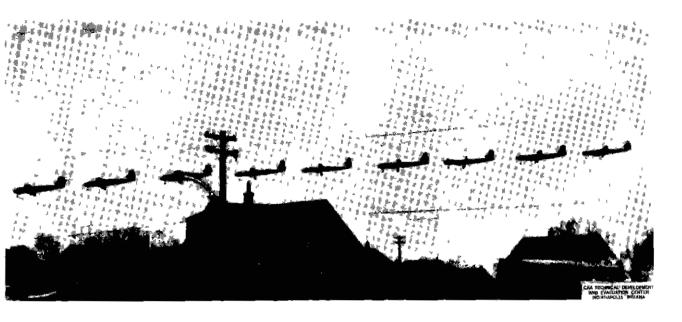


Fig 7 Example of Flight-Path Attitude Analysis

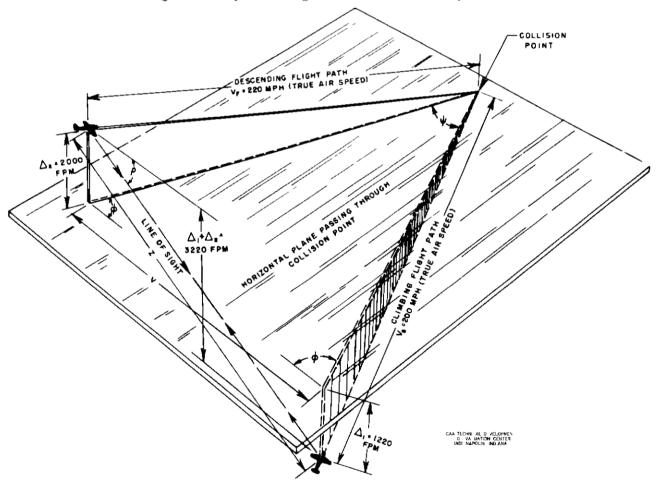


Fig 8 Vector Diagram of Sample Solution for Climb-and-Descent Collision Conditions

COLLISION COURSE C ONE AIRPLANE TURNING AND ONE FLYING STRAIGHT AND LEVEL

Description

Calculation of the visual angles to the right or left which are required for the pilots of each airplane to see the other airplane is facilitated by the use of the charts designed for one airplane turning left and one airplane flying straight and level. For the solution of a condition involving a right turn, see page 22

The turning-and-level-flight visual-angle charts are designed around the hypothesis that one airplane is flying straight and level while another airplane is making a left turn and both are on a collision course, flying in the same horizontal plane, and approaching each other at any relative speed from any direction

Procedure and Formulas

The turning and straight-and-level charts are shown in Figs. 1 and 9 through 25. The procedure for using these charts is as follows.

- l To determine speed relationship A, enter Fig l with the true air speeds of the two aircraft
- 2 To determine the time value to required for entering the horizontal-visual-angle charts, enter Fig 25 with the angle of bank λ of the turning airplane, the velocity V_T of the turning airplane, and the time t of investigation before collision
- 3 To determine horizontal visual angles a and β (where α = the visual angle for the airplane flying straight and level and β = the visual angle for the turning airplane) required for the pilots of each aircraft to see the other aircraft, select from Figs 10 through 21 the horizontal-visual-angle chart that applies to the absolute difference in heading between the two aircraft at collision points. Enter this chart with the time value t_0 and the speed relationship A
- 4 To determine the distance factor Z_0 , enter with speed relationship A and time value t_0 the Z_0 table located on the same horizontal-visual-angle chart that was selected in Step C-3
- 5 To determine actual distance separation Z between aircraft at any time prior to collision, enter Fig. 24 with distance factor Z_0 and radius of turn R_T . If the radius of turn is not known, enter Fig. 23 with the angle of bank λ and the velocity in turn V_T
- 6 To determine the vertical visual angle μ as affected by the angle of bank λ , enter Fig 22 with the angle of bank λ and the horizontal visual angle β

The speed-relationship chart, designed for Conditions A and B and shown in Fig. 1, is used to obtain the speed relationship A. In this case, however,

$$A = \frac{V_{c}}{V_{T}}$$
 (7)

Where

V = Velocity of the airplane flying straight and level, in mph

V_T = Ve ocity of the airplane turning, in mph

The to nomograph shown in Fig 25 was constructed by using the equation

$$t_0 = \frac{209 \ 2 \ \tan \lambda \ t}{V_T} \tag{8}$$

Where

 $\mathbf{V}_{\Upsilon}^{}$ = Velocity of the turning airplane, in mph

 λ = Angle of bank of turning airplane, in degrees

t = Actual time of investigation before collision, in minutes

to = Required time value for entering visual-angle charts, in minutes

The quantity \mathbf{t}_0 is a relative time value determined by proportional analysis as described in the Appendix

The visual-angle charts shown in Figs 10 through 21 were constructed by substituting example values in the following equations

$$\alpha = \arctan \frac{Y}{X}$$
 (9)

$$\beta = \alpha + \omega - 90^{\circ} \tag{10}$$

$$Z = \sqrt{X^2 + Y^2} \tag{11}$$

To solve Equations (9), (10), and (11), the following has to be known

$$X = V_c t + R_T (\cos \psi - \cos \omega)$$
 (12)

$$Y = R_{T} \left(\sin \psi + \sin \omega \right) \tag{13}$$

$$\omega = Kt - \psi \tag{14}$$

Where

a = the horizontal visual angle that is needed from straight ahead for the turning airplane to be seen from the airplane flying straight and level, in degrees

β = the horizontal visual angle that is needed from straight ahead for the airplane flying straight and level to be seen from the turning airplane, in degrees

Z = Distance between the aircraft at time t, in feet

t ≈ Time before collision, in minutes

V_c ≈ Velocity (true air speed) of airplane flying straight and level, in feet per minute

R_m = Radius of flight path of turning aircraft, in feet

K = Rate of turn of the turning aircraft, in degrees per minute

ψ , ω , X, and Y are illustrated in Fig. 86 of the Appendix

Note In case it is necessary to calculate visual angles by using the formulas, use of Table II will be necessary to determine that value of ψ which corresponds to the absolute difference in heading at collision point

The vertical-visual-angle chart shown in Fig. 22 was constructed by passing a horizontal plane, which simulates the plane of the horizon, through a right cylinder at different bank angles and then plotting the points of intersection. The plane of the horizon is the horizontal plane in which both aircraft are flying, therefore, the pilot flying either aircraft must look to the horizon to see the other aircraft.

table ii $\mbox{relationship between} \; \psi \; \mbox{and actual heading difference}$

ψ (degrees)	Difference in Heading at Collision Point (degrees)	Condition
0	90	With turning airplane on the left of cruising airplane at collision point
30	60	With turning airplane on the left of cruising airplane at collision point
60	30	With turning airplane on the left of cruising airplane at collision point
90	0	Both airplanes heading in the same direction
120	30	With turning airplane on the right of cruising airplane at collision point
150	60	With turning airplane on the right of cruising airplane at collision point
180	90	With turning airplane on the right of cruising airplane at collision point
210	120	With turning airplane on the right of cruising airplane at collision point
240	150	With turning airplane on the right of cruising airplane at collision point
270	180	Head on
300	150	With turning airplane on the left of cruising airplane at collision point
330	120	With turning airplane on the left of cruising airplane at collision point

The radius-of-turn chart shown in Fig. 23 was constructed by substituting example values in the equation 7

$$\tan \lambda = \frac{0.067 \, v_T^2}{R_T}$$
 (15)

Where

λ = Angle of bank, in degrees

 V_T = Velocity of turning airplane, in mph

 R_{T}^{-1} Radius of turn, in feet

 $^{^7 \}rm Bradley \, Jones, \, "Elements of Practical Aerodynamics," Eqn. (22.2.1) p. 365, John Wiley & Sons, Inc., New York, 1950$

The distance chart shown in Fig. 24 was constructed by substituting values in the equation

$$Z = \frac{Z_0^R T}{2801 \ 1} \tag{16}$$

Where

Z = Actual distance between aircraft at time t before collision, in feet

Zn = Proportional distance between aircraft as obtained from visual-angle chart, in feet

 $R_{\mathbf{T}}$ = Radius of turn of turning airplane, in feet

Sample Solution

It is desired to know what visual angles are required for the pilots of each aircraft to see the other aircraft while on a collision course and to determine the distance they are apart at a given time. Refer to Fig. 9. In this case, one airplane is flying straight and level and one airplane is turning left

 V_c , the velocity of the airplane cruising straight and level, = 250 mph, true air speed

V_T, the velocity of the turning airplane, = 100 mph, true air speed

 λ , the angle of bank of the turning airplane, = 20°

t, the time before collision to be investigated, = 0.5 minute

absolute difference in heading at collision point = 90°

Solution

- 1 Enter Fig 1 with V_c = 250 mph and V_T = 100 mph, and read A = 25 2 Enter Fig 25 with λ = 20°, t = 05 minute, and V_T = 100 mph, and read t_0 = 038
- 3 Since the absolute difference in heading at collision is 90° with the turning airplane on the left at collision point, Fig. 13 of the horizontal-visual-angle charts is selected. Enter this chart with t_0 = 0.38 and A = 2.5, and read α , which is the horizontal visual angle required from the airplane flying straight and level, equal to 4° left, also read β , which is the horizontal visual angle required from the turning airplane, equal to 52° left

To find the distance between the aircraft at 05-minute separation, enter the Z₀ table on Fig 13 with A equal to 25 and to equal to 038. No value of t_0 equal to 038 appears, therefore, the following interpolation is made

$$A = 2.5$$
 $t_0 = 0.40$ $Z_0 = 22,727$ $Z_0 = 17,076$ $Z_0 = 17,076$

Since 0 38 is 0 8 of the interval between 0 30 and 0 40, 0 8 x 5651 = 4521 for $t_0 = 0$ 38 and A = 2.5, $Z_0 = 17,076 + 4521 = 21,597$ feet, or approximately 21,600 feet. This is not a true distance but a proportional distance which will be used in Step 5 to determine Z, the true distance

If the absolute difference in heading at collision does not exactly correspond to one of the charts, then a similar interpolation between charts is necessary

4 If R $_{
m T}$ the radius of turn of the turning aircraft is not known, Fig. 23 is entered with λ equal to 20° and V_T equal to 100 mph, and read R_T equal to 1840 feet

- 5 Enter Fig 24 with Z_0 equal to 21,600 feet, previously determined, and R_T equal to 1840 feet Read Z = 14,000 feet
- 6 To find the vertical visual angle μ , required at 0.5 minute from the turning aircraft while it is in a 20° bank, enter Fig. 22 with λ equal to 20° and β equal to 52° left and read vertical visual angle required equal to 16° up

Additional Considerations

The formulas and charts are designed for using true air speed and true heading of the aircraft. In the event that ground track and ground speeds are used, it is necessary to correct the visual angles by adding or subtracting the crab angle or the wind-drift angle.

Visual angles may be determined from one airplane flying straight and level and one airplane making a right turn instead of a left turn by using the following procedure

Given

The absolute difference in heading at collision point is equal to 150° with the turning airplane on the right of the cruising airplane at the collision point and making a right turn

- l Enter the horizontal-visual-angle chart designed for a difference in heading at collision point equal to 150° and with the airplane making a turn on the left of the airplane flying straight and level at the collision point. This chart is entered with the parameters determined by the given condition, the only difference being that left is substituted for right in using the charts as related to heading at collision point.
- 2 In reading α and β , the magnitudes of the angles are correct but the directions of the angles need to be reversed to apply correctly to the given condition
- 3 The distance between the airplanes at a specified time before collision and the vertical visual angles are determined in the same manner as described for one airplane flying straight and level and one airplane making a left turn

Discussion of Significant Trends

The rate of change of the horizontal visual angle required from the airplane flying at level cruise is greatest when the velocity of the turning airplane is the greater of the two

The rate of change of the horizontal visual angle required from the turning airplane is greatest and varies over the widest range when the velocity of the airplane flying at level cruise is the greater of the two

When both airplanes are traveling at the same speed, the rate of change of the horizontal visual angle required from the turning airplane is generally greater than that of the airplane flying at level cruise

When the rate of change of the horizontal visual angle required is the greatest from one airplane, it is a minimum for the other airplane

In analyzing all horizontal-visual-angle charts for Condition C, it will be noted that when all curves cross at one common intersection point then the turning airplane is directly ahead or directly behind the airplane flying straight and level

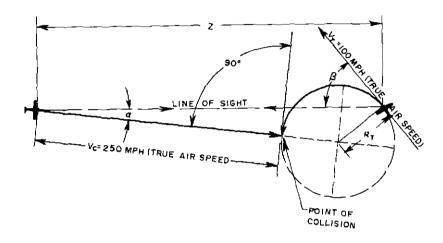
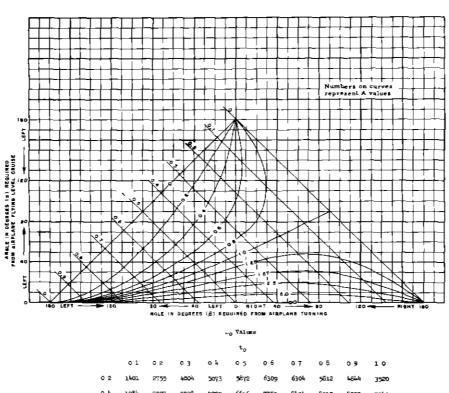
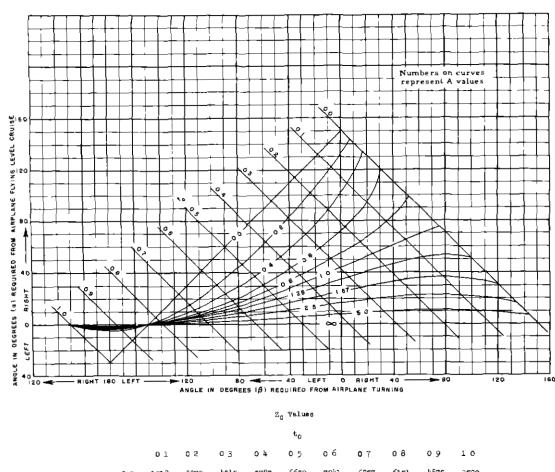



Fig 9 Vector Diagram of Sample Solution for One Airplane Turning Left and One Airplane Flying Straight and Level


The following charts are designed for the determination of horizontal-visual-angle requirements and distance factors for one airplane turning and one airplane flying straight and level

						O APTOR	В				
						t ₀					
		0 1	0 2	0 3	0 4	0 5	0 6	0 7	0.8	0 9	10
	0 2	1401	2755	4004	5073	9£72	6309	6304	5812	الملها	3520
	0 4	1084	2307	3708	5200	6616	7755	6431	8519	5000	7040
	0 6	797	2013	3701	5685	7698	9455	10704	11279	11163	10560
	3 0	586	1941	3985	5447	8997	11295	13046	14062	14326	14080
≺	10	547	2116	4504	7400	10432	13216	15426	16856	17495	17500
	1 25	769	2600	5379	8766	12344	15687	18432	20356	21453	22000
	1 67	1394	3712	7148	11268	15700	19902	23125	26202	28052	29333
	2 5	2605	6434	11156	16739	22702	28501	33664	37913	41250	L4000
	5.0	7173	14961	oluni A	2anah	hhhas	sl ₁ ABa	61:260	72000	0.050	000==

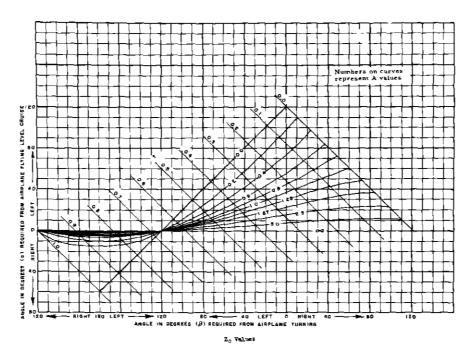

CAA TECHNI AL DE ELOPMEN AND E/A MATION CENTER NOT NAPOLS INDIANA

Fig 10 At Collision Point, the Difference in Heading = 0° and the Turning Airplane is on the Left of the Airplane Flying Straight and Level

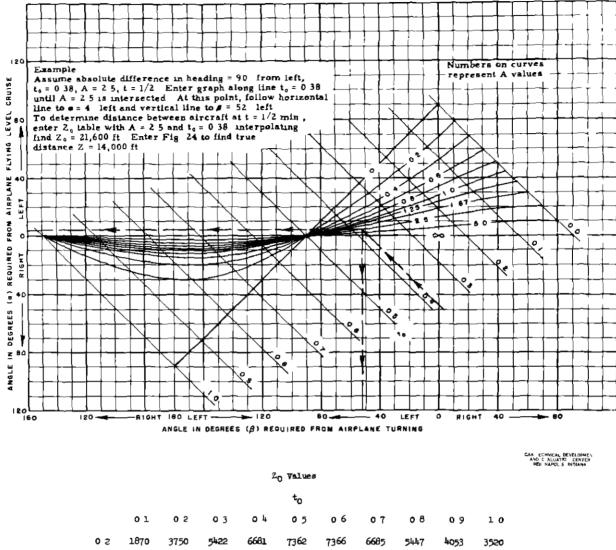

						-	'a	,				
							$\mathbf{t_0}$					
			0 1	0 2	0 3	0 4	0 5	0 6	0 7	0 8	09	10
		0.5	1518	3075	4545	5787	6659	7041	6857	6101	4575	3520
		0 4	1364	3009	4796	6524	7968	8926	9254	8914	8037	7040
		06	1290	3106	5251	7456	9426	10895	11679	11727	11203	10560
		9 о	1310	3351	5864	8520	10972	12910	14117	14543	14370	14080
	4	10	1420	3716	658¤	9672	12575	14951	16563	1/358	17537	17600
		1 25	1655	4292	7606	11195	14629	17526	19627	20878	21496	22000
		1 67	2192	5436	9468	13858	18129	21852	24743	26744	28 09 6	29333
		2 5	3488	8044	13501	19420	25271	3 056 8	34989	38476	41295	11000
CAN TECHNI AL DEVELOPMENT ND E A UNTION CENTER NOMMANAPO IS INDIANA		50	7749	16537	26315	36680	47052	56871	65766	73676	8 0 894	88000

Fig 11 At Collision Point, the Difference in Heading = 30° and the Turning Airplane is on the Left of the Airplane Flying Straight and Level

						t _D				AND EYALUA	L DEVELOPMENT ATION CENTER LIS INDIAMA
		0 1	0 2	03	0 4	0 5	0 6	0.7	0 8	0 9	10
	02	1693	3439	5055	6357	7181	7440	7020	6000	4620	3520
	0 F	1728	3714	5726	7510	8828	9500	9447	8743	771.0	7040
	06	-831	4094	6501	87 8	10512	11601	11,909	11,934	10653	10560
	o 8	1991	4551	7346	10013	12217	13704	14371	14335	14007	14080
4	10	21,57	5065	8239	11320	13936	15812	16834	17141	17166	17600
	1 25	2501	5765	باهباو	129%	16097	18445	19913	20652	21118	22000
	1 67	3080	7021	11420	15803	19718	22839	25045	26509	27711	29333
	2 5	4381	9713	15603	21.532	26997	31631	35311	38232	40903	J-1-000
	50	8608	18241	28545	38967	48932	5802 2	66109	73120	8 0 495	86000

Fig 12 At Collision Point, the Difference in Heading = 60° and the Turning Airplane is on the Left of the Airplane Flying Straight and Level

				1	Z _O Value	9				
					^t o					
	01	0 2	0 3	0 4	0 5	06	07	08	0 9	10
0 S	1870	3750	5422	6681	7362	7366	6685	5447	4053	3520
0 4	2061	4275	6 363	8053	9122	9436	8998	8023	7065	7040
0 6	2290	4846	7336	9436	10882	11522	11375	10720	10173	10560
08	2547	5447	8328	10825	12642	13615	13783	13466	133 0 9	14080
∢10	2825	6071	933 5	12219	14402	15714	16207	16236	16458	17600
1 25	3192	6873	10607	13965	16602	18341	19252	19716	2 040 2	22000
1 67	3839	8244	12748	16881	20269	22727	24346	25542	26985	2 9 333
2 5	5202	11061	17076	22727	27 60 2	31510	34570	37231	40169	神000
5 0	9479	19716	30185	40301	49602	57891	65321	72385	79752	88000

Fig 13 At Collision Point, the Difference in Heading = 90° and the Turning Airplane is on the Left of the Airplane Flying Straight and Level

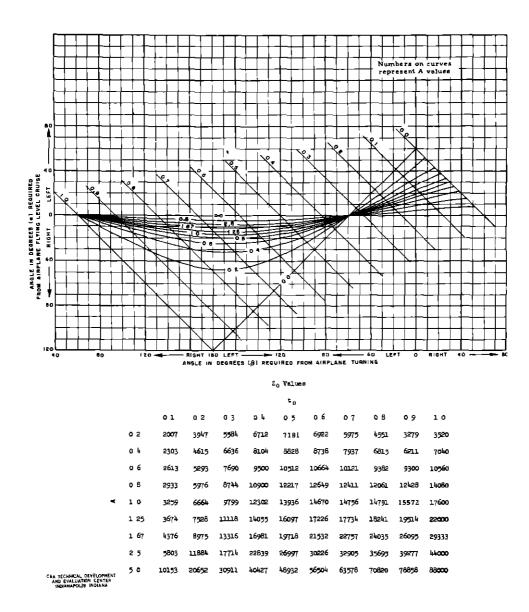
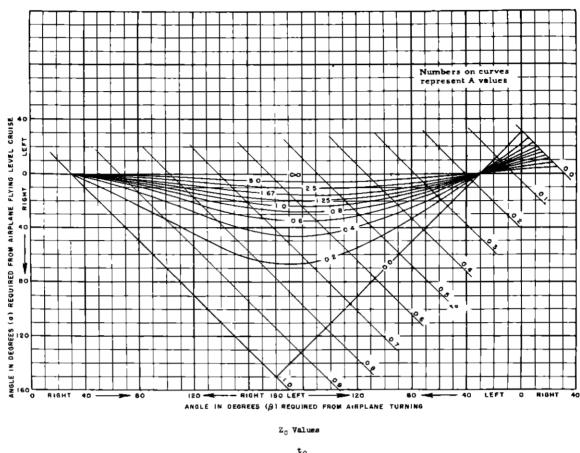



Fig 14 At Collision Point, the Difference in Heading = 120° and the Turning Airplane is on the Left of the Airplane Flying Straight and Level

					•	o variable	•				
						to					
		01	0 2	0 3	0 4	0 5	o 6	0 7	0 8	0 9	10
	0 2	2077	3994	5514	6 444	6659	6126	4927	3351	2386	3520
	0 4	2424	4695	6519	76 56	7968	7456	6337	5242	5335	7040
	0 6	2773	5398	7537	8926	9426	9087	8257	7719	8444	10560
	08	3122	6101	8 5 65	10233	10972	10885	10409	10371	11585	14080
◄	10	3472	6804	9599	11563	12575	12779	12675	13091	14738	17600
	1 25	3910	7683	10898	13248	14629	15227	15592	16537	16686	22000
	1 67	4641	9148	13071	16093	18129	19420	20560	22331	25274	29333
CAA TECHNICAL DEVELOPMEN AND EVALLATION CENTER	2 5	6104	12080	17438	21852	25271	27997	30659	33994	38463	1 11000
INDI MA OLIS INDIANA	50	10500	20878	30596	39321	47052	54159	61292	69126	78052	88000

Fig 15 At Collision Point, the Difference in Heading = 150° and the Turning Airplane is on the Left of the Airplane Flying Straight and Level

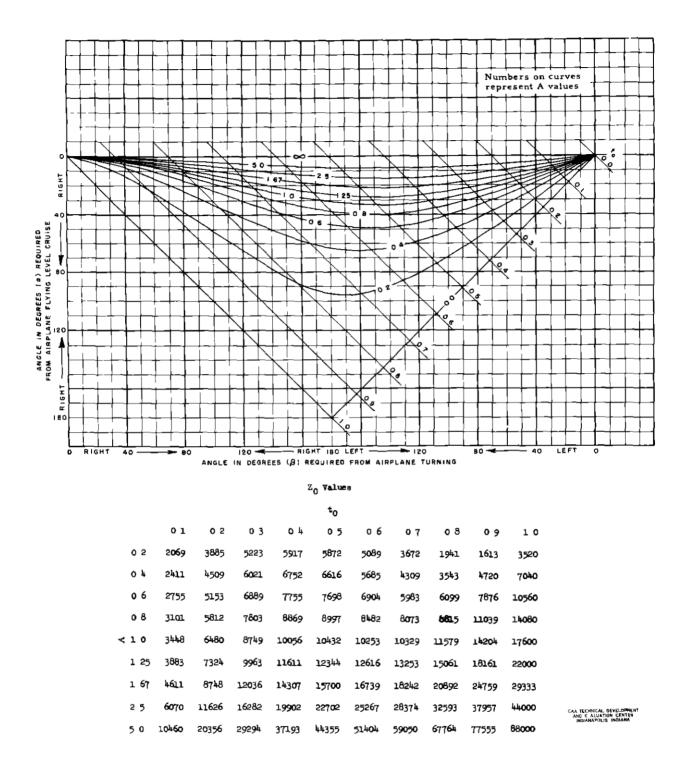


Fig 16 At Collision Point, the Difference in Heading = 180° and the Turning Airplane is on the Right of the Airplane Flying Straight and Level

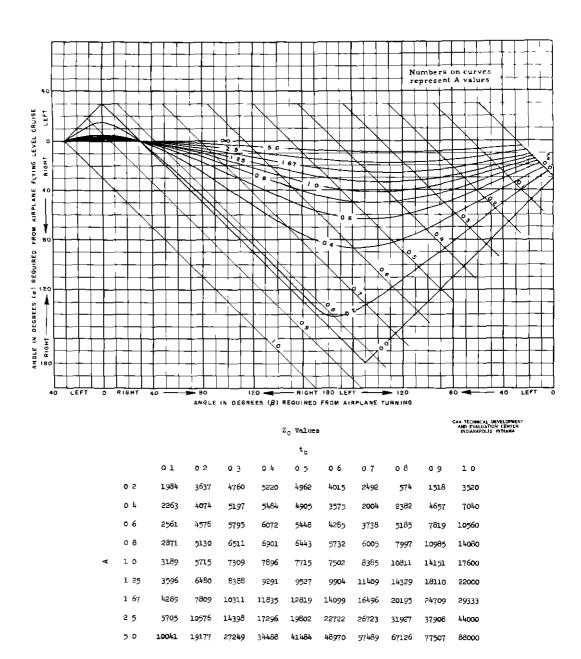


Fig 17 At Collision Point, the Difference in Heading = 150° and the Turning Airplane is on the Right of the Airplane Flying Straight and Level

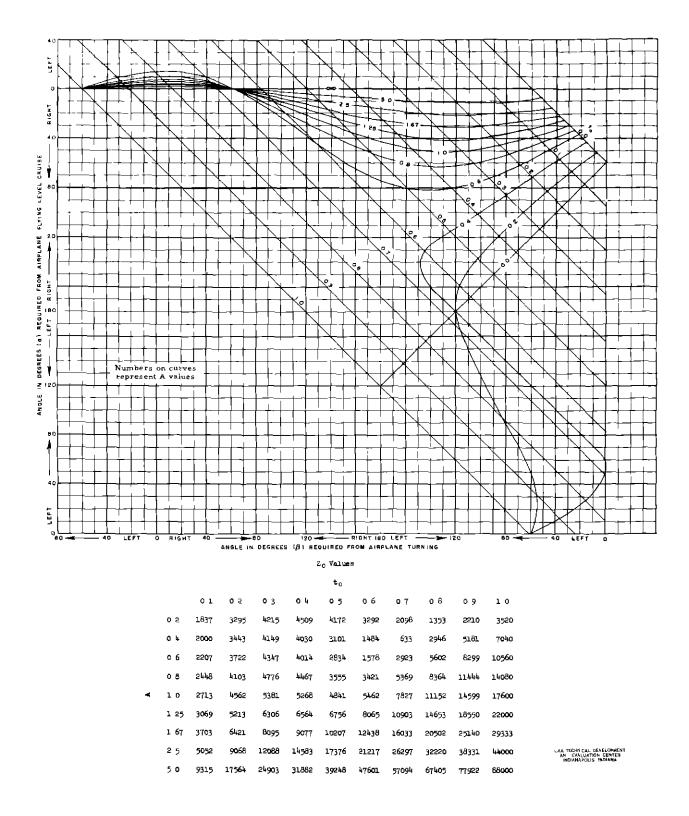
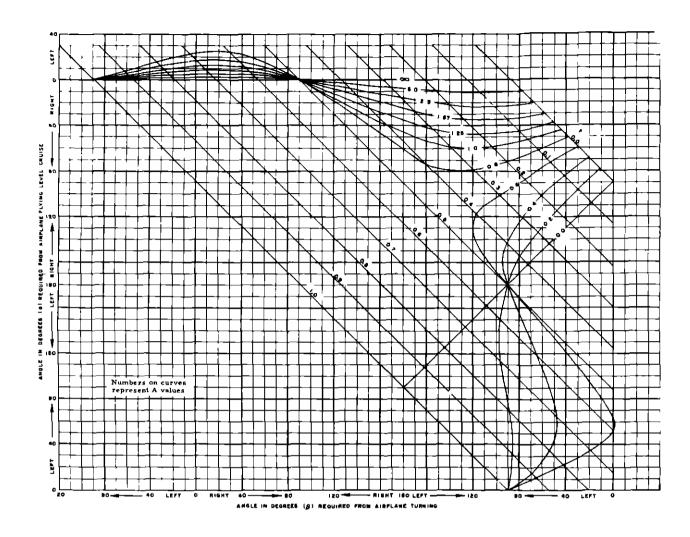



Fig 18 At Collision Point, the Difference in Heading = 120° and the Turning Airplane is on the Right of the Airplane Flying Straight and Level

				:	Z _O Valum	•				
					t _o					
	0 1	0 2	0 3	0 4	0 5	06	07	о в	09	1 0
0.5	1657	2935	3730	4013	3842	33B3	2923	2806	3105	3520
0 4	1655	2716	3084	2789	2082	1850	2948	4556	6030	7040
06	1727	2670	2710	1850	322	2079	4580	7036	9119	10560
08	186L	2806	2722	1741	1438	3760	6738	9701	12248	14080
< 10	2052	3100	3114	2570	3198	5734	9054	12433	15393	17600
1 25	23142	3629	3962	4080	5398	8298	12032	15889	19335	22000
1 67	2909	4749	5783	6866	9064	12640	17076	21.695	25917	29333
2 5	4501	7363	9898	12640	16398	21396	27264	33371	39100	140 00
50	9427	15889	22889	30178	38398	¥7761	57994	68516	78682	88000

Fig 19 At Collision Point, the Difference in Heading = 90° and the Turning Airplane is on the Right of the Airplane Flying Straight and Level

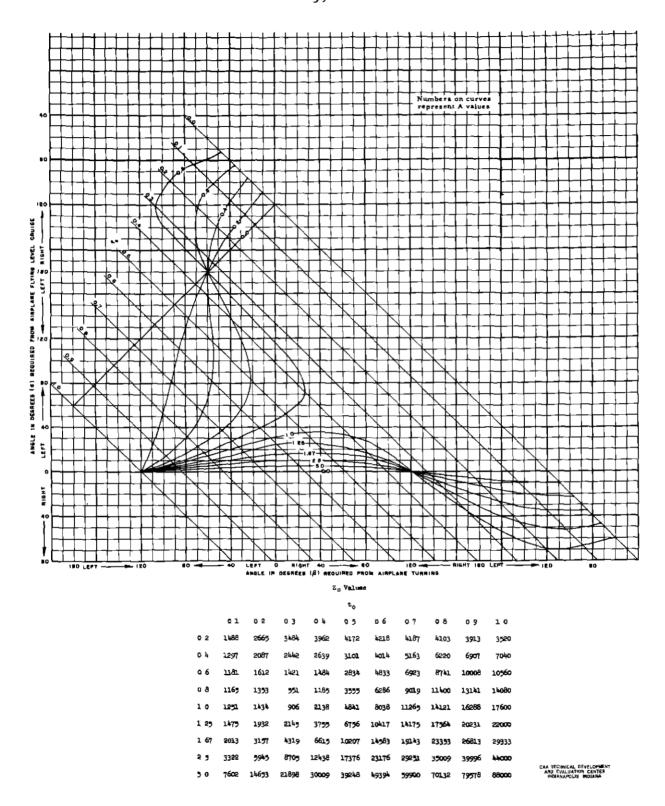
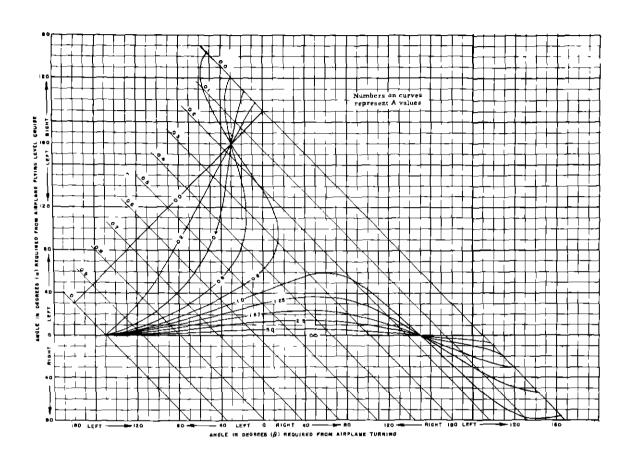
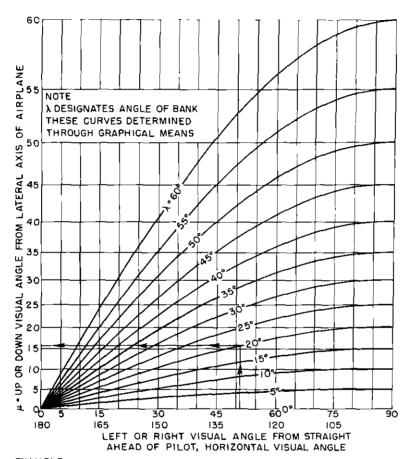




Fig. 20 At Collision Point, the Difference in Heading = 60° and the Turning Airplane is on the Right of the Airplane Flying Straight and Level

					1	Z _O Value					
						۲0					
		01	0 2	0 3	0 4	0 5	0.5	o 7	0.8	09	10
	0 2	1389	259h	3593	4384	4962	5307	5380	5130	4524	3520
	0 4	1053	1898	2741	3744	4905	6072	7035	7593	7604	7040
	o 6	732	1212	2084	3575	5448	7382	9066	10239	10740	10560
	o 8	L59	57L	1845	3938	6443	9002	11270	12957	13890	14080
<	10	366	755	2167	4712	7715	10794	13565	15710	17047	17600
	1 25	622	1176	3074	6012	9527	13166	16501	19177	20998	22000
	1 67	1292	2614	5 0 1	8552	12819	17296	21485	24988	27588	29333
	2 5	2731	5536	9245	14099	19803	25624	31597	36663	و770سا	44000
	5 0	7116	14329	22336	31443	41484	51954	62237	71802	60369	88000

Fig 21 At Collision Point, the Difference in Heading = 30° and the Turning Airplane is on the Right of the Airplane Flying Straight and Level

EXAMPLE
ASSUME \(\chi^2\) CO LEFT AND VISIBILITY ANGLE \(\circ 52^\) LEFT
ENTER GRAPH ALONG LINE OF LEFT VISIBILITY ANGLE \(\circ 52^\)
UNTIL \(\chi^2\) CO IS INTERSECTED AT THIS POINT, FOLLOW
HORIZONTAL LINE OVER TO UP VISIBILITY ANGLE \(\circ 16^\)
FROM LATERAL AXIS OF AIRPLANE

Fig 22 Determination of Vertical Visual Angle During Turning Collision Conditions

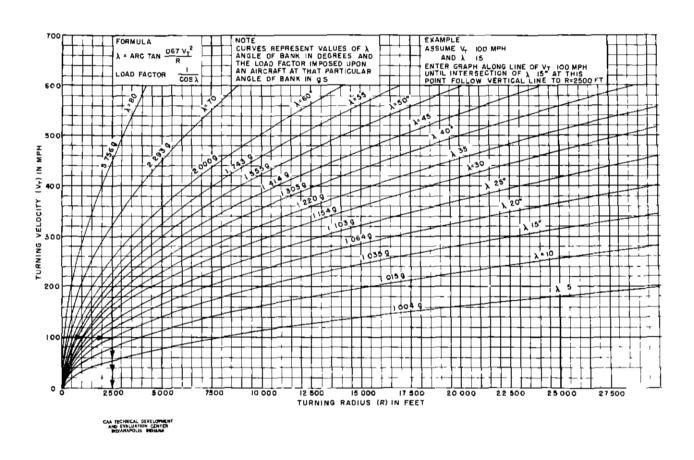
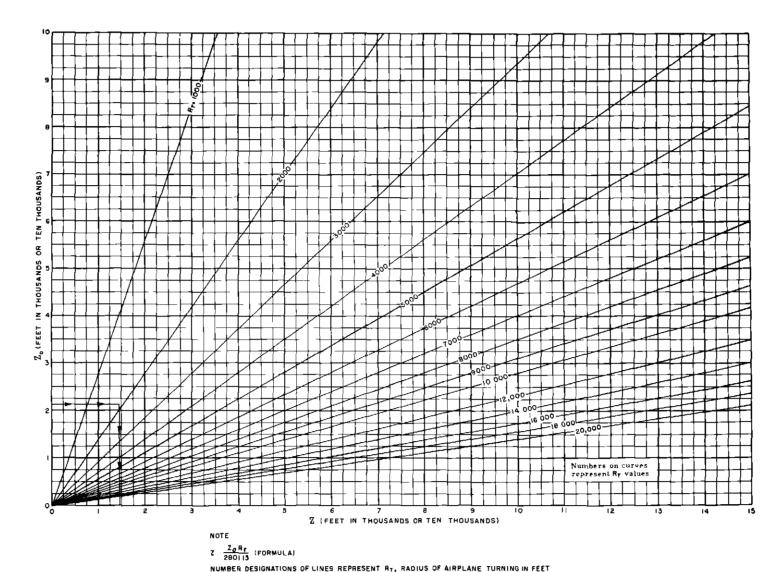



Fig 23 Determination of Turning Radius

EXAMPLE ASSUME Z $_0$ 21,600 FEET AND R=1840 FEET ENTER GRAPH ALONG LINE Z $_0$ =2 16 which is 21 600 FEET, until line R $_1$ =1840 is intersected at this point follow vertical line TO 1 4, OR Z=14,000 FEET

Fig 24 Determination of Distance of Separation for One Airplane Turning and One Airplane Flying Straight and Level

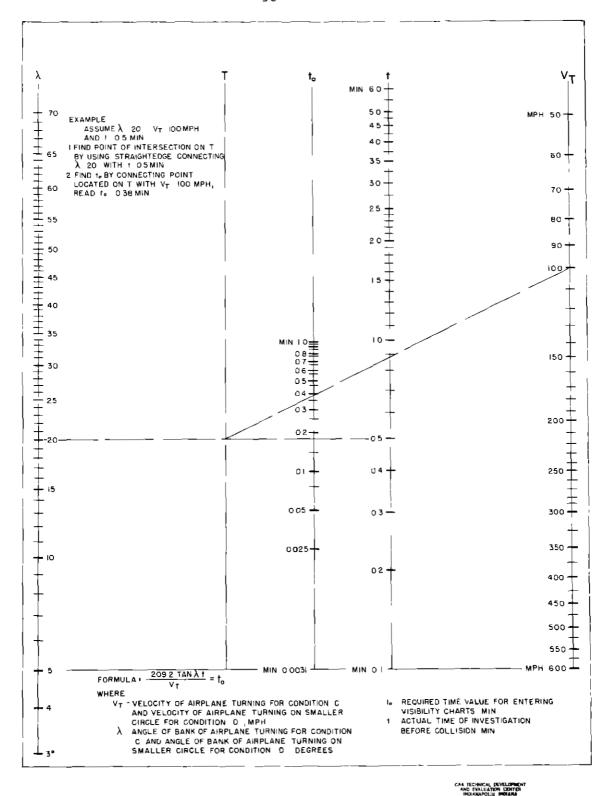


Fig. 25 Determination of t₀ Value for Turning Collision Conditions

COLLISION CONDITION D TWO AIRPLANES TURNING IN THE SAME DIRECTION

Description

The calculation of visual angles required to the right or left for the pilot of each airplane to see the other airplane is facilitated by the use of the charts designed for two airplanes turning in the same direction. The turning-visual-angle charts are designed around the hypothesis that both airplanes are making a turn to the left on a collision course, flying in the same horizontal plane, and approaching each other at any relative speed and direction

Procedure and Formulas

The turning charts are shown in Figs 23, 25, 26, and 28 through 83. The procedure for using these charts is as follows

Solution 1

R/A 5 1 0

Where

R = Ratio of turning radii

A = Ratio of speeds (speed relationship)

- l. To determine the turning radii R_2 and R_3 , enter Fig. 23 with the turning velocities V_{T_2} and V_{T_3} and with the angles of bank λ_2 and λ_3
- 2 To determine speed relationship A, ratio of radii R, and ratio of radii to ratio of velocities R/A, enter Fig 26 with the turning velocities V_{T_2} and V_{T_3} and with the turning radii R_2 and R_3 See notes on Fig 26. Note If R/A is less than one, follow the procedure for Solution 2
- 3 To determine the time value to required for entering the horizontal-visual-angle charts, 'r Fig 25 with the angle of bank λ_2 of the airplane turning on the smaller circle, the velocity V_{T_2} of the airplane turning on the smaller circle, and the actual time t of investigation 'fore collision
- 4 To determine the horizontal visual angles α and β required for the pilot of each aircraft to see the other aircraft, select that horizontal-visual-angle chart from Fig. 28 through 82 which applies to the absolute difference in heading between the two aircraft at collision point and the R/A value as determined in Step 6. Enter this chart with time value t_0 and with the peed relationship A
- 5 To determine the distance factor Z_0 , enter, with speed relationship A and with the time value t_0 , the Z_0 table located on the same horizontal-visual-angle chart that was selected in Step 4
- 6 To determine actual distance of separation Z between aircraft, enter Fig 83 with istance factor Z₀ and with the smaller turning radius R₂
- 7 To determine the vertical visual angle μ , as affected by the angles of bank of the turning airplanes, enter Fig 22 with the angles of bank λ 2 and λ 3 and with their respective visual ingles α and β

Solution 2

R/A < 10

The procedure for Solution 2 is the same as that for Solution 1 except that the values which pply to the airplane turning on the smaller circle are substituted for the values of the airplane turning on the larger circle when all charts designed for this condition are entered

The chart shown in Fig 26 is constructed in the same manner as the speed-relationship chart used in Conditions A, B, and C, but with the change in nomenclature shown in Equation (17)

$$A = \frac{V_{T_3}}{V_{T_2}} \tag{17}$$

Where

 V_{T_3} = Velocity of airplane turning on larger circle, in mph

V_{T₂} = Velocity of airplane turning on smaller circle, in mph

$$R = \frac{R_3}{R_2} \tag{18}$$

Where

R3 = Radius of the larger circle, in feet

R, = Radius of the smaller circle, in feet

Therefore,

$$R/A = \frac{R_3/R_2}{V_{T_3}/V_{T_2}}$$
 (19)

For determination of to, the same four-parallel-scale nomograph constructed for Condition C, Fig 25 will be used. The formula remains the same

$$t_0 = \frac{209 \ 2 \tan \lambda \ t}{V_T} \tag{8}$$

Where

 $V_{T_3} = V_T$ = Velocity of the airplane turning on the smaller circle, in mph

 $\lambda_2 = \lambda$ = Angle of bank of the airplane turning on the smaller circle, in degrees

t = Actual time of investigation before collision, in minutes

t₀ = Required time value for entering visual-angle charts, in minutes

The visual-angle charts shown in Figs 28 through 82 were constructed for this condition by substituting example values in the following equations. See Fig. 89 in the Appendix

$$\alpha = \omega_0 - \theta - 90^{\circ} \tag{20}$$

$$\beta = \omega_1 - \theta + 90^{\circ} \tag{21}$$

$$Z = \sqrt{(X_0 - X_1)^2 + (Y_1 - Y_0)^2}$$
 (22)

To solve these equations, the following must be known

$$X_1 = R_1(\cos \psi - \cos \omega_1) \tag{23}$$

$$Y_1 = R_1(\sin \psi - \sin \omega_1) \tag{24}$$

$$\omega_1 = K_1 t - \psi \tag{25}$$

$$\mathbf{X}_0 = \mathbf{R}_0 (1 - \cos \omega_0) \tag{26}$$

$$Y_0 = -R_0 \sin \omega_0 \tag{27}$$

$$\omega_0 = K_0 t \tag{28}$$

$$\theta = \arctan \frac{Y_1 - Y_0}{X_0 - X_1}$$
 (29)

Where

a = The horizontal visual angle (from straight ahead) needed for the airplane turning on the larger circle to be seen from the airplane turning on the smaller circle, in degrees

β = The horizontal visual angle (from straight ahead) needed for the airplane turning on the smaller circle to be seen from the airplane turning on the larger circle, in degrees

Z = The distance between the aircraft at time t, in feet

 \mathbf{R}_1 = The turning radius of the airplane flying on the larger circle, in feet

 R_{\cap} = The turning radius of the airplane flying on the smaller circle, in feet

t = The time before collision, in minutes

 K_1 = The rate of turn of the airplane flying on the larger circle, in degrees per minute

 K_0 = The rate of turn of the airplane flying on the smaller circle, in degrees per minute

'e In case it is necessary to calculate visual angles by means of the formulas, use of Table III will be necessary to determine the relationship between ψ and the absolute difference in heading t collision point ω_0 , ω_1 , X_0 , Y_0 , Y_1 , and θ are illustrated in Fig. 89 of Appendix I. The chart shown in Fig. 83 was constructed by substituting values in the equation

$$Z = \frac{Z_0 R_2}{1400 \ 56} \tag{30}$$

Where

Z = The actual distance between aircraft at time t before collision, in feet

 $\mathbf{Z}_{\mathbf{0}}$ = The proportional distance between aircraft as obtained from the visual-angle chart, in feet

R₂ = The radius of turn of the airplane flying on the smaller circle, in feet

Table III $\textbf{RELATIONSHIP BETWEEN } \psi \textbf{ and actual heading difference}$

ψ (degrees)	Difference in Heading at Collision Point (degrees)	Condition
0	0	Heading in same direction
45	4 5	With airplane turning on the larger circle on the right of airplane turning on smaller circle at collision point
90	90	With airplane turning on the larger circle on the right of airplane turning on smaller circle at collision point
135	135	With airplane turning on the larger circle on the right of airplane turning on smaller circle at collision point
180	180	Head on
225	135	With airplane turning on the larger circle on the left of airplane turning on smaller circle at collision point
270	90	With airplane turning on the larger circle on the left of airplane turning on smaller circle at collision point
315	45	With airplane turning on the larger circle on the left of airplane turning on smaller circle at collision point

Sample Solution

It is desired to know what visual angles are required for the pilots of each aircraft to see the other aircraft while on a collision course and to determine the separation of the aircraft at a given time. Refer to Fig. 27. In this case, both airplanes are turning in the same direction

Solution 1

Let

 V_{T_2} , the velocity of the airplane flying on the smaller circle, = 100 mph, true air speed,

 λ 2, the angle of bank of the airplane turning on the smaller circle, = 15°,

 V_{T_3} , the velocity of the airplane flying on the larger circle,= 100 mph, true air speed,

 λ_3 , the angle of bank of the airplane turning on the larger circle, = 75°,

t, the time before the collision to be investigated, = 1 minute

The absolute difference in heading at collision point = 45° with the airplane that is turning on the larger circle on the right of the airplane turning on the smaller circle

- 1 Enter Fig 23 with V_{T_2} = 100 mph and with λ_2 = 15°, and read R_2 = 2500 feet. Also enter with V_{T_3} = 100 mph and with λ_3 = 75°, and read R_3 = 5000 feet.
 - 2 Enter Fig 26 with V_{T_2} = 100 mph and with V_{T_3} = 100 mph, and read A = 10, enter with

 R_2 = 2500 feet and with R_3 = 5000 feet, and read R = 20, then enter with R = 20 and with

- A = 1.0, and read R/A = 2.0 Note If R/A becomes less than 1.0, use Solution 2
 - 3 Enter Fig 25 with $\lambda_2 = 15^{\circ}$, $V_{T_2} = 100$ mph, and t = 1 minute, and read $t_0 = 0.56$ minute
- 4 Since the absolute difference in heading at collision point = 45° and R/A = 20 and since the airplane turning on larger circle is on the right of the airplane turning on the smaller circle, Fig 36 of the visual-angle charts is selected and is entered with A = 10 and t_0 = 0.56 Read \boldsymbol{q} , which is the horizontal visual angle required from the airplane turning on the smaller circle, equal to 46° left, also read $\boldsymbol{\beta}$, which is the horizontal visual angle required from the airplane turning on the larger circle, equal to 80° left. If the distance between the aircraft at 1 minute is also desired, then enter the Z₀ chart on the same figure with A = 10 and t₀ = 0.56 No value of t_0 equal to 0.56 appears, therefore, the following interpolation is made

$$A = 1 0$$
 $t_0 = 0 60$ $Z_0 = 5620$ $Z_0 = 4872$ $748 = Difference$

Since 0.56 is 0.6 of the interval between 0.50 and 0.60, then 0.6 \times 748 = 448.8 or approximately 449

For

 $t_0 = 0.56$ and A = 1.0, $Z_0 = 4872 + 449 = 5321$ feet, or approximately 5300 feet

This is not a true distance but is a proportional distance and is used in the following step

- 5 Enter Fig 83 with $Z_0 = 5300$ feet and $R_2 = 2500$ feet, and read Z = 9400 feet
- 6 To find the vertical visual angle μ at 1 minute before collision required from the airplane turning on the smaller circle at a 15° bank angle, enter Fig. 22 with λ_2 = 15° and α = 46° left and read required vertical visual angle μ = 11° up. Also, to find the vertical visual angle at 1 minute prior to collision required from the airplane turning on the larger circle, enter Fig. 22 with λ_3 = 75° and β = 80° left and read required vertical visual angle μ = 75° up

Solution 2

If the R/A value is computed to be less than 1 0 by using procedures outlined in sample Solution 1, then the following process is to be used in computing the visual angles required from two airplanes making a left turn

Given (Reference Fig. 27)

 $V_{\mbox{T\,2}}$, the velocity of the airplane flying on the smaller circle, = 100 mph, true air speed

 λ_2 , the angle of bank of the airplane turning on the smaller circle,= 5°

 v_{T_3} , the velocity of an airplane flying on the larger circle, = 250 mph, true air speed

 λ_3 , the angle of bank of the airplane turning on the larger circle, = 22°.

t, the time before collision to be investigated,= 1 minute

The absolute difference in heading at collision point = 45°, with the airplane turning on the larger circle on the right of the airplane turning on the smaller circle

- 1 Enter Fig 23 with V_{T_2} = 100 mph and λ_2 = 5°, and read R_2 = 8000 feet. Also enter V_{T_3} = 250 mph and λ_3 = 22°, and read R_3 = 10,000 feet.
- 2 Enter Fig 26 with V_{T_2} = 100 mph and V_{T_3} = 250 mph, and read A = 25, then also enter with R_2 = 8000 feet and R_3 = 10,000 feet, and read R = 125, then enter with R = 125 and A = 25, and read R/A = 05

Since there are no visual-angle charts designed for an R/A value less than 1 0, the following procedure is to be followed. The ratios R, A, and R/A are inverted, that is, enter Fig. 26 with $V_{T_2} = 250$ mph instead of 100 mph and $V_{T_3} = 100$ mph instead of 250 mph and read A = 0.40

Also enter with R_2 = 10,000 feet instead of 8000 feet and R_3 = 8000 feet instead of 10,000 feet, and read R = 0.8. Then entering Fig. 26 with R = 0.8 and A = 0.4, read R/A = 2.0

- 3 EnterFig 25 with $\lambda_3 = 22^\circ$, $V_{T_3} = 250$ mph, and t = 1 minute, and read $t_0 = 0.34$
- 4 The absolute difference in heading at collision point = 45°, with the airplane turning on the larger circle at the right of the airplane turning on the smaller circle at collision point. For this situation, however, is selected the horizontal-visual-angle chart that was designed for an absolute difference in heading at collision point = 45° but with the airplane turning on the larger circle at the left of the airplane turning on the smaller circle at collision point. Since R/A = 2 0, Fig. 77 is selected and is entered with A = 0.4 and t_0 = 0.34. Read α , which is the horizontal visual angle required from the airplane turning on the larger circle, equal to 74° left. Also read β , which is the horizontal visual angle required from the airplane turning on the smaller circle, equal to 123° right.

Normally, α is the visual angle required from the airplane turning on the smaller circle, and β is the visual angle required from the airplane turning on the larger circle, but, as the note on Fig. 77 indicates, when entering with an A value less than 0.5, α becomes the visual angle required from the airplane turning on the larger circle and β becomes the visual angle required from the airplane turning on the smaller circle

5 In determining the distance between the aircraft at 1 minute, the Z_0 table on Fig. 77 is entered with t_0 = 0.34 and A = 0.4. No value of t_0 equal to 0.34 appears, therefore, the following interpolation is made

A = 0 4
$$t_0$$
 = 0 40 Z_0 = 1383 $A = 0.4$ t_0 = 0 30 Z_0 = $\frac{1346}{37}$ = Difference

Since 0 34 is 0 4 of the interval between 0 30 and 0 40, 0 4 x 37 = 14 8, or approximately 15 Then, because t_0 = 0 34 and A = 0 4, Z_0 = 1346 + 15 = 1361 feet

- This is not a true distance but is a proportional distance and is used in the following step 6 Enter Fig 83 with Z₀ = 1361 feet and R₃ = 10,000 feet, and read Z = 9800 feet Normally, R₂, the radius of the smaller circle, is used in entering Fig 83, but for this solution R₃, the radius of the larger circle, is used
- 7 The vertical visual angles are determined in the same manner as described in Solution 1, Step 6

Additional Considerations

Visual angles may be determined from two airplanes making a right turn instead of from both making a left turn by using the following procedure.

Given

The absolute difference in heading at collision point is equal to 45°, with the airplane turning on the larger circle on the right of the airplane turning on the smaller circle at the point of collision and with both airplanes making right turns

- l Enter the horizontal-visual-angle chart designed for a difference in heading at collision point equal to 45° with the airplane that is turning on the larger circle on the left of the airplane turning on the smaller circle at the collision point. This chart is entered with the parameters determined by the given condition, the only difference being that in using the charts left is substituted for right as related to the collision point.
- 2 In reading α and β , the magnitudes of the angles are correct but the directions of the angles need to be reversed to apply correctly to the given condition
- 3 The distance between the airplanes at a specified time before collision and the vertical visual angles are determined in the same manner as described for two airplanes making left turns
- 4 Additional considerations mentioned in Collision Condition C apply similarly to this condition

Visual angles for two airplanes turning in opposite directions may be determined as indicated in the Appendix

Discussion of Significant Trends

The rate of change of the horizontal visual angle is generally greater from the airplane turning on the smaller circle

In a condition where the curves cross, it indicates that a straight line can be drawn through the two turning airplanes and the collision point at that instant of time before collision

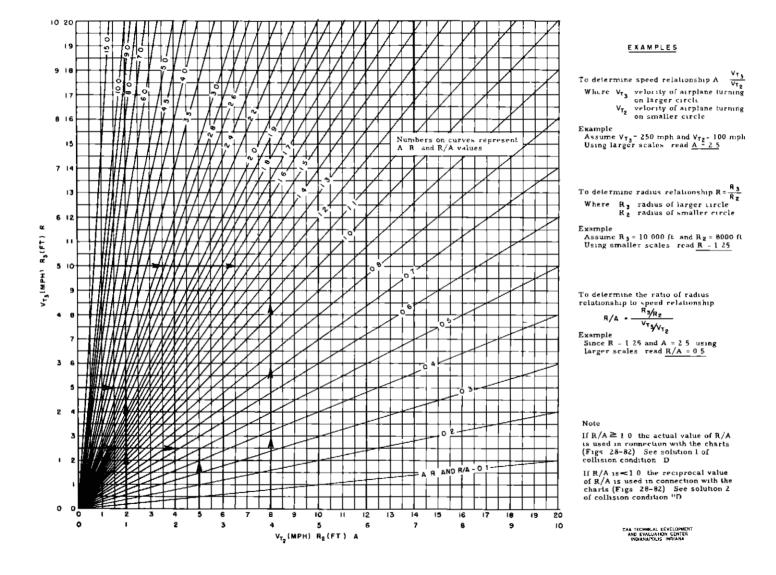


Fig 26 Determination of A, R, and R/A for Two Turning Airplanes

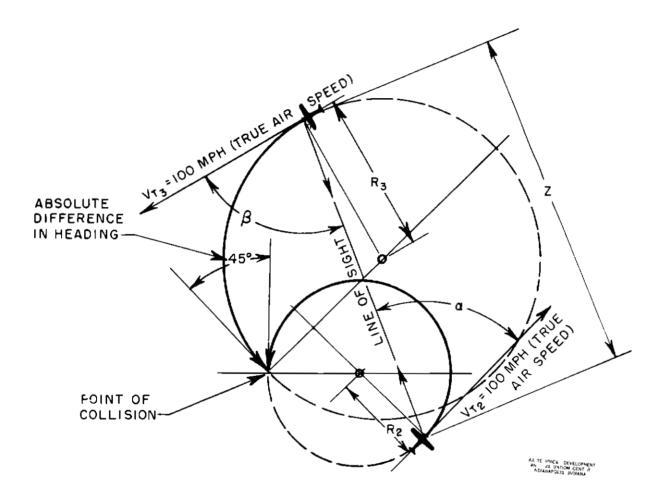


Fig 27 Vector Diagram of Sample Solution for Two Airplanes Turning Left

The following and distance :	charts are do factor for two	esigned for the airplanes turn	determination ing in same dir	of horizontal-vi ection	sual-angle re	quirements

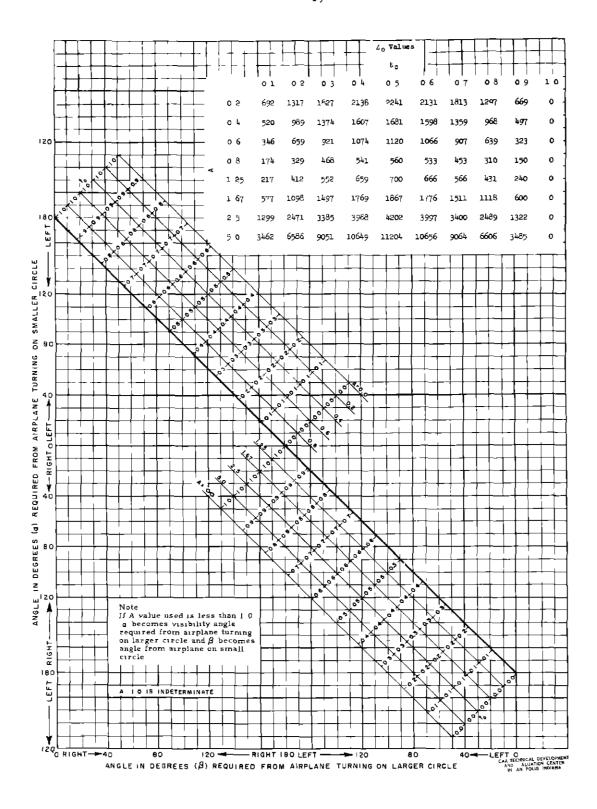
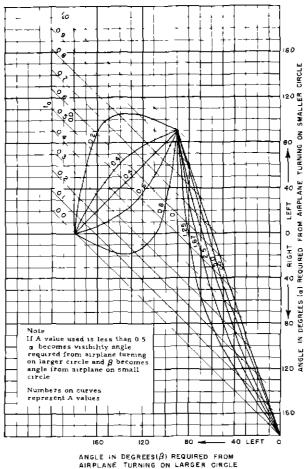
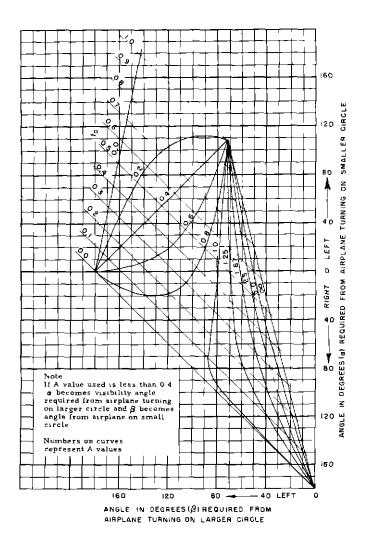




Fig 28 At Collision Point, the Difference in Heading = 0°, R/A = 1 0, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

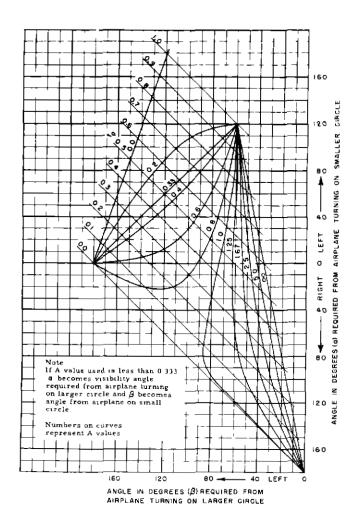

			AA TECHNICAL BEVELOPME AND EXCLUSION CENT IN 20 Values										
						t ₀							
		01	0.2	03	d a	0 5	0 6	0 7	0 8	0 9	10		
	0 2	693	1322	1845	2178	2310	2253	2020	1655	1,288	1120		
	0 4	523	1011	1456	1792	2020	2170	2239	2259	2249	2241		
	0.6	3 56	733	1164	1599	2020	2444	2818	3120	3362	3361		
	9 P	50 5	539	1053	1662	2310	2982	3588	4080	4382	4482		
4	10	128	520	1152	1920	2801	3660	կեկը	5072	5468	5602		
	1 25	217	785	1564	2530	3571	le631	5589	6363	6843	7003		
	1 67	620	1414	2453	3670	5028	6364	7566	853h	9136	9338		
	2 5	1342	2809	4462	6289	8166	10000	11627	12925	13733	1400á		
	50	3529	7109	10746	14405	17936	21205	24014	261 <i>9</i> 7	27555	26011		

Fig 29 At Collision Point, the Difference in Heading = 0°, R/A = 2 0, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

				;	Zo Value	9	Ä	TECHNI AL O NO EVA UA O NOU NAPOL 8	N CENTER	
					^t o					
	01	0.5	0 3	0 4	0 5	o 6	07	0 8	09	1 0
0 2	695	1329	1868	2233	2412	2417	2254	1959	1613	1333
0 4	525	1031	1522	1935	2266	2535	2713	2796	2776	2664
o 6	362	778	1292	1848	2412	2974	3460	3822	4 00 2	3997
0 8	219	622	1248	1999	2801.	3620	4348	4918	5249	5328
< 10	165	642	1405	2342	3352	4382	53 0 8	6047	6503	6661
1 25	295	886	1802	2938	4168	5424	6560	7481	6077	8325
1 67	633	1499	2685	4128	5685	7266	8711	9900	10706	11101
2 5	1354	2887	4696	6759	8936	11116	13110	14784	15975	16650
5 Q	3542	7202	11044	15051	19069	22961	26506	29520	31805	33301

Fig 30 At Collision Point, the Difference in Heading = 0°, R/A = 25, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

	Z _O Values to 0 1 0 2 0 3 0 4 0 5 0 6 0 2 695 1335 1889 2277 2490 2538 2							CAA TECHNICAL DEVELOPMENT NO EVALUATION CENTER TYDIANAPO IS INDIANA				
					t _o							
	0 1	0 2	03	o 4		٥ 6	0 7	0 8	0 9	1 0		
0 2	695	1335	1889	2217	2490	2538	2423	2160	1813	1456		
0 4	527	1047	1571	2041	2442	278L	3022	3131	3092	2911		
0 6	368	810	1384	2021	2672	3317	3862	4251	4419	4367		
0 8	231	679	1379	2221	3120	4025	4621	5426	5762	5822		
< 1 0	162	713	1557	2592	3705	4833	5839	6629	7111	7277		
1 25	3 0 9	954	1959	3203	4552	5920	7157	8152	8802	9 09 7		
1 67	643	1560	2839	1407	6105	7630	540 9	10715	11625	12159		
2 5	1362	2940	4852	7064	9421	11801	14003	15879	17263	18194		
50	3550	7263	11233	15450	19757	24008	27969	31450	34268	36387		

Fig 31 At Collision Point, the Difference in Heading = 0°, R/A = 3 0, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

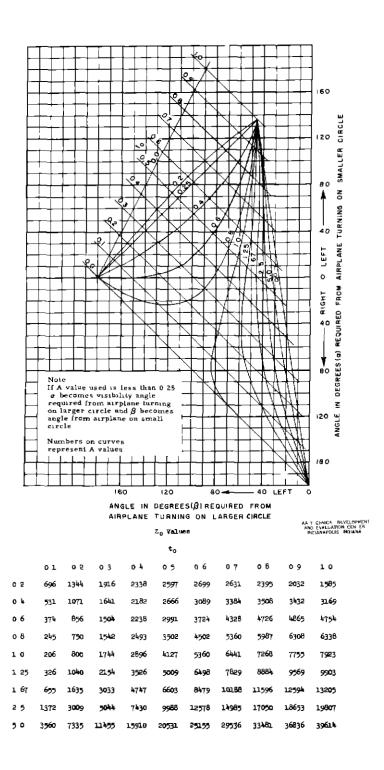
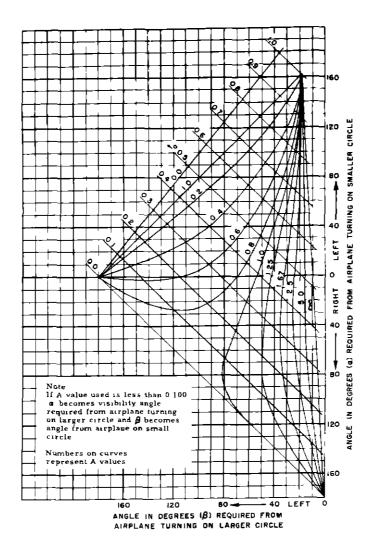



Fig 32 At Collision Point, the Difference in Heading = 0°, R/A = 40, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

Fig 33 At Collision Point, the Difference in Heading = 0°, R/A = 6 0, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

							Zo Valu	es		AL DÉVELOPME ATRON CENTER		
							^t o			DLIS INDIANA	'	
			s ı	0 2	03	0 4	0 5	c 6	0 7	08	0 9	10
	0	2	693	1362	1976	2 46 2	2861	2984	2 9 72	2740	2311	1732
	0	4	537	1119	1779	2445	3 0 63	359€	3938	4032	3855	3 46 2
	0	6	388	والم	1726	2 6 22	3529	4373	5 01 8	5373	5411	52.9ħ
	0	8	273	683	1831	2959	¥131	5247	6150	6737	6968	6924
¥	1	0	246	956	2069	3409	4817	6177	7313	6110	8529	8056
	1	25	361	1197	2494	7-07 h	5749	7384	8787	9834	10479	10819
	1	67	680	1776	3374	5321	7401	9458	11277	12719	13734	14426
	2	5	1390	3133	5381	8036	10874	13713	16310	18504	2 0 243	216 <u>r</u> 1
	5	٥	3577	7457	11614	16616	21649	26709	31521	35899	39778	13279

Fig 34 At Collision Point, the Difference in Heading = 0°, R/A = 10 0, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

CIRCLE

OH SMALLER

AIRPLANE

(U) REQUIRED

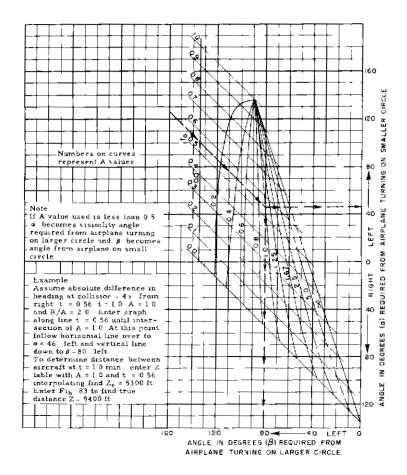
IN DEGREES

40 LEFT

RIGHT

øр

Fig 35 At Collision Point, the Difference in Heading = 45°, R/A = 1 0, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle


SIGHT

ANGLE IN DEGREES (\$) REQUIRED FROM AIRPLANE TURNING ONLARGER CIRCLE

IBO LEFT

LEFT

O RIGHT

		CAN TECHNICAL DE ELOPMENT AN VAIU TION CENTER									
					t _o			NOI NAPCL S INTIANA			
	0 1	0 2	о 3	o 4	0 5	06	07	0 8	0 9	10	
0 2	$\sigma \iota$	1521	2182	2656	2911	2945	2744	2319	1745	1121	
0 4	718	1469	2200	2798	32,5	3449	3453	3223	2797	2240	
0.6	701	1496	2331	30 79	3674	4094	4278	4203	3880	3361	
0.8	726	1,600	2560	3463	4230	4824	5165	5217	4975	₩8 2	
< → 1 0 —	 800 −	- 1760 -	 2560	- 3920 -	- 4872-	5620	6096	6240	6080	5600	
1 25	914	2040	3308	4564	569 0	6627	7267	7551	74 49	7004	
1 67	1182	2593	4160	5738	$7_{-}72$	8394	9 273	9739	9747	9337	
2 5	1823	35 6 9	6076	8271	10292	12038	13354	14246	14350	14005	
5 0	39,6	80 ^L l ₄	12226	16285	20004	23228	25749	27430	28176	28011	

Fig 36 At Collision Point, the Difference in Heading = 45°, R/A = 20, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

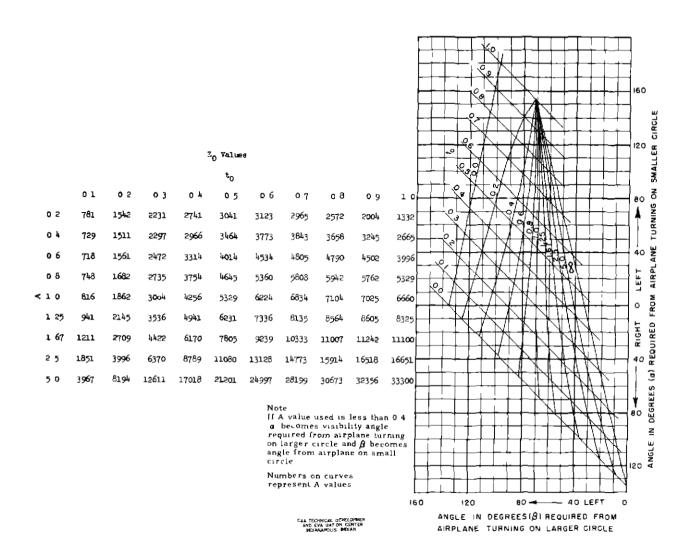


Fig 37 At Collision Point, the Difference in Heading = 45°, R/A = 25, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

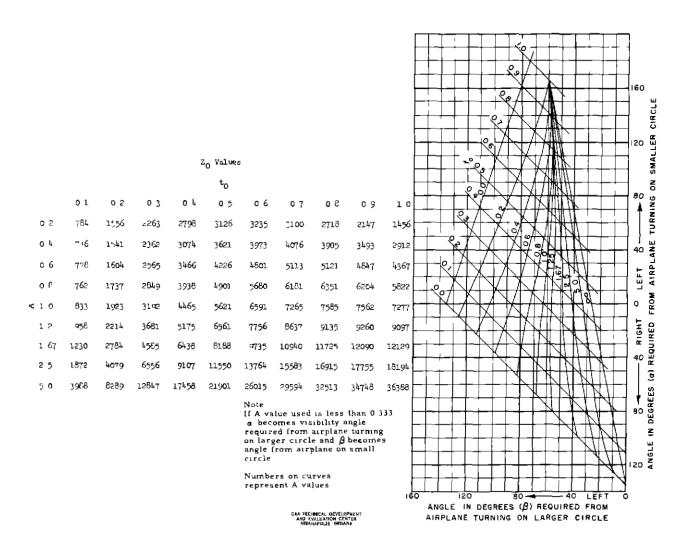


Fig 38 At Collision Point, the Difference in Heading = 45°, R/A = 3 0, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

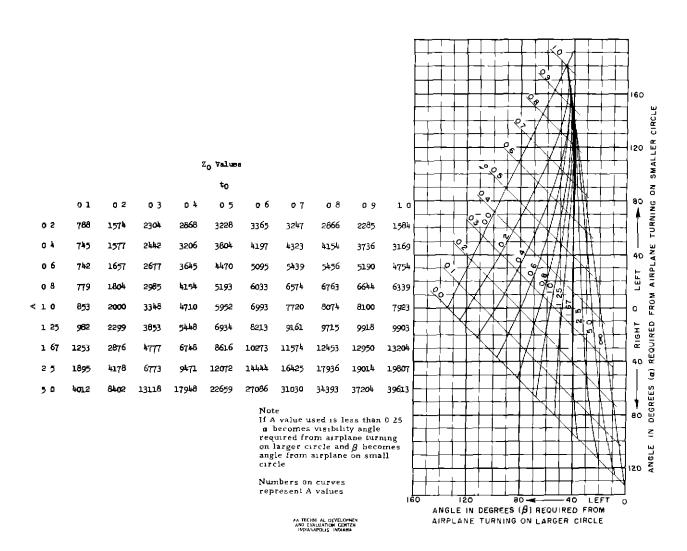


Fig 39 At Collision Point, the Difference in Heading = 45°, R/A = 4 0, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

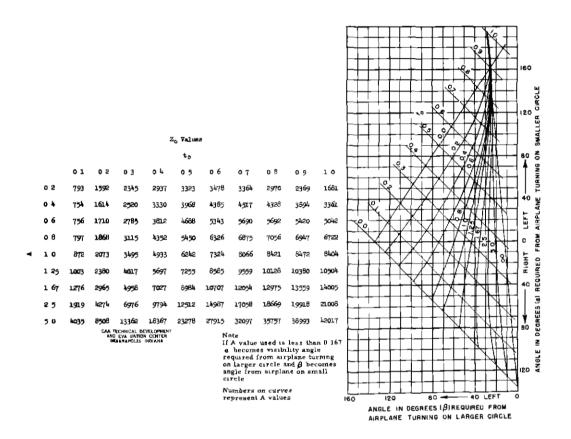
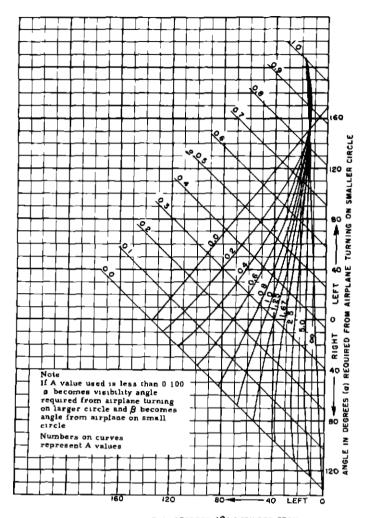



Fig 40 At Collision Point, the Difference in Heading = 45°, R/A = 6 0, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

ANGLE IN DEGREES (\$) REQUIRED FROM AIRPLANE TURNING ON LARGER CIRCLE

				1	Zo Value	A					
					to			CRA TECHNICAL DEVELOPMENT AND EVALUATION CENTER INDIANAPOLIS INDIAN			
	01	0 2	0 3	0 4	0 5	0 6	0 7	08	09	10	
0 2	796	1607	2378	2989	33 <i>9</i> 1	3552	3433	3018	2396	1731	
0 4	762	1643	2581	3423	4086	4511	4627	4409	3956	3463	
0 6	767	1751	2866	3934	4839	5503	58 33	5802	5517	5194	
0 8	811	1918	3214	8644	5628	6512	7045	7194	7079	6925	
< 10	889	2132	3606	5097	6440	7533	8260	8 5 88	8642	8656	
1 25	1021	5##5	4139	5877	7476	8818	9781	10329	10596	10819	
1 67	1295	3033	5093	7227	9232	10976	12320	13232	13852	14426	
2 5	1937	4346	7126	10022	12804	15314	17403	19036	20364	21640	
50	4054	8586	13536	18650	23665	283 <i>9</i> 6	32671	36451	39901	43280	

Fig 41 At Collision Point, the Difference in Heading = 45°, R/A = 10 0, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

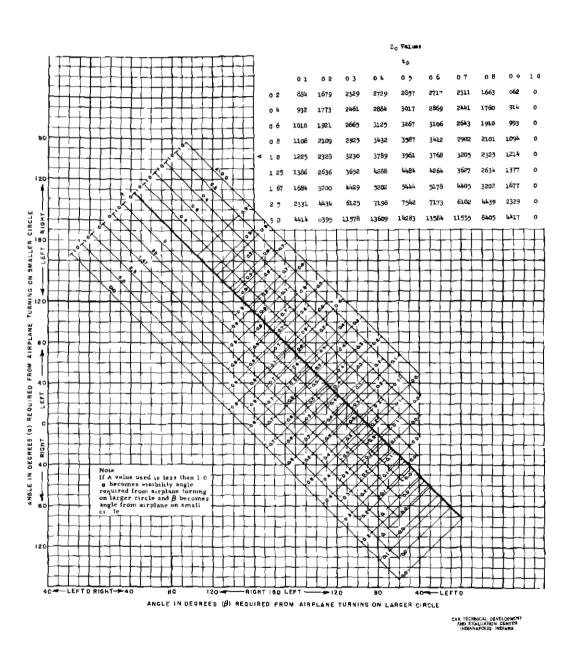


Fig 42 At Collision Point, the Difference in Heading = 90°, R/A = 1 0, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

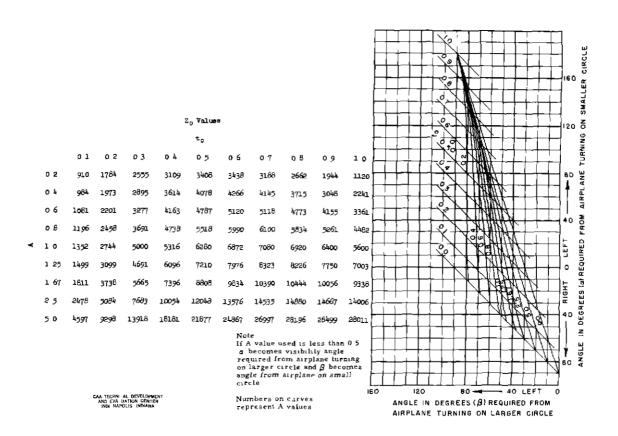


Fig 43 At Collision Point, the Difference in Heading = 90°, R/A = 2 0, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

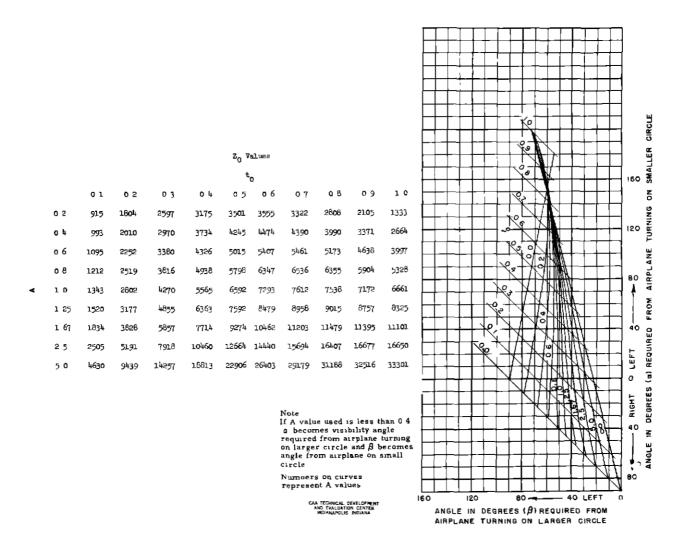


Fig 44 At Collision Point, the Difference in Heading = 90°, R/A = 2 5, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

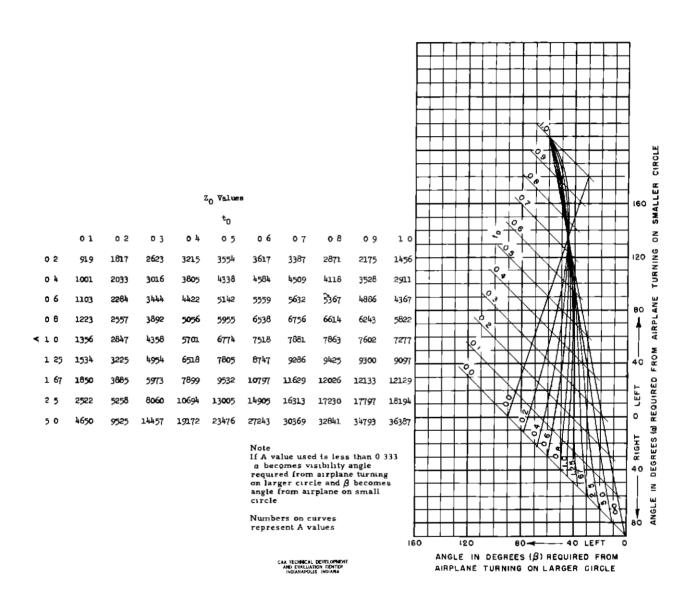
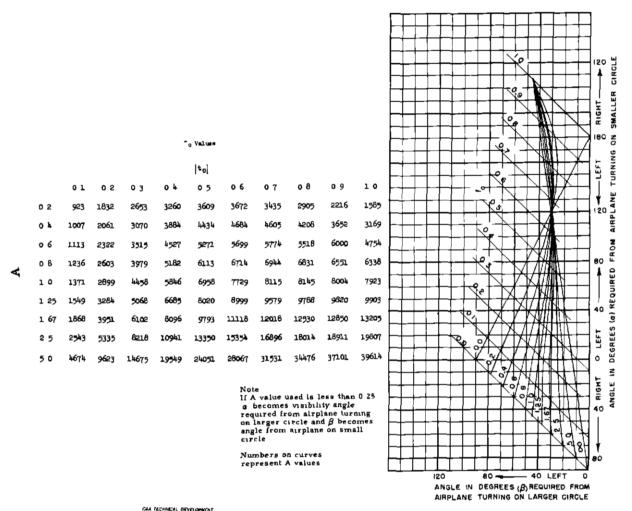



Fig 45 At Collision Point, the Difference in Heading = 90°, R/A = 3 0, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

INDIANAPOLIS RIDIANA

Fig 46 At Collision Point, the Difference in Heading = 90°, R/A = 4 0, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

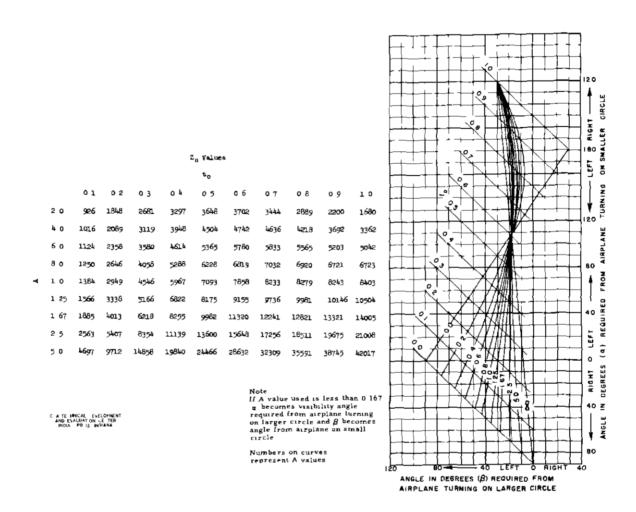
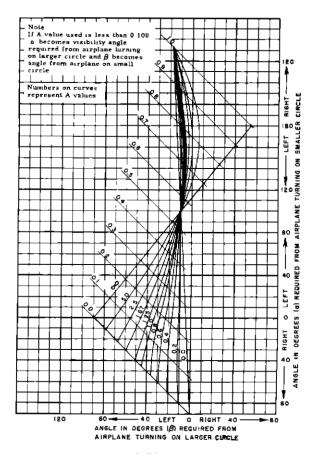



Fig 47 At Collision Point, the Difference in Heading = 90°, R/A = 6 0, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

Z _O Values CAA IECHYCAL DENELOHM											DEL EL COURS	
						t _o			AND EVALUA ION CENTER			
		01	0 2	0 3	0 4	0 5	o 6	07	φB	В 9	1 0	
¥	0 2	931	1859	2701	3323	3669	3707	3423	2838	2149	1732	
	0 4	1021	2109	3154	3991	4541	4755	4613	4164	3661	3462	
	0 6	1133	2385	3627	4669	5413	5802	5816	5524	7204	52.94	
_	8 0	1259	2679	4114	5354	6287	6850	7026	6897	6756	6924	
4	10	1396	2984	4608	60h2	7162	7898	8240	8277	8312	8 6 56	
	1 25	1578	3381	5236	6 9 0 7	8256	9211	9759	10007	10261	10819	
	1 67	1900	4059	6297	8353	10079	11395	12296	12697	13510	14426	
	2 5	2579	5459	8447	11259	13728	15768	17380	18689	20017	21641	
	50	4725	भाग	14979	20012	24680	288B9	32647	36090	39548	4327	

Fig 48 At Collision Point, the Difference in Heading = 90°, R/A = 10 0, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

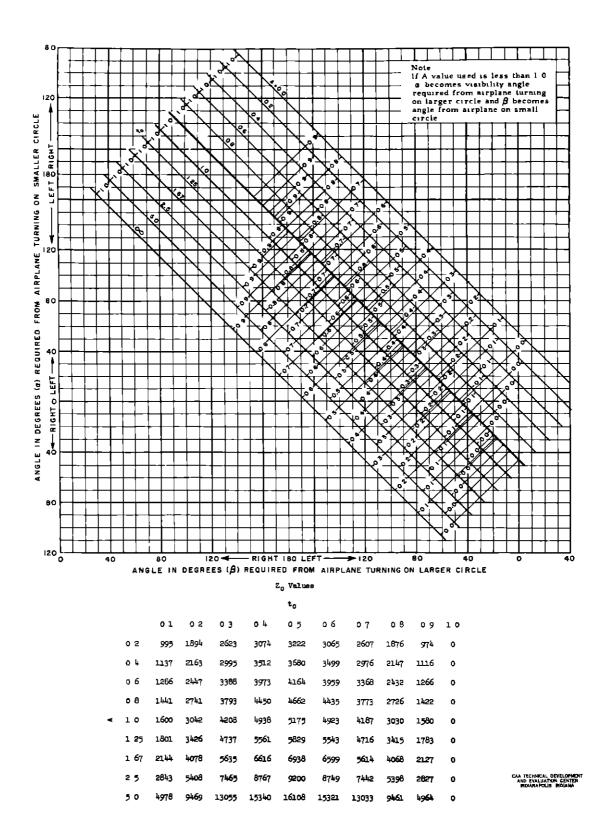


Fig 49 At Collision Point, the Difference in Heading = 135°, R/A = 1 0, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

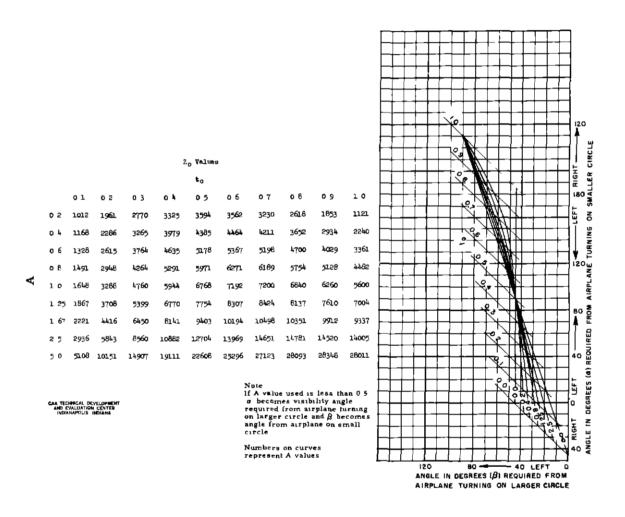


Fig 50 At Collision Point, the Difference in Heading = 135°, R/A = 2 0, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

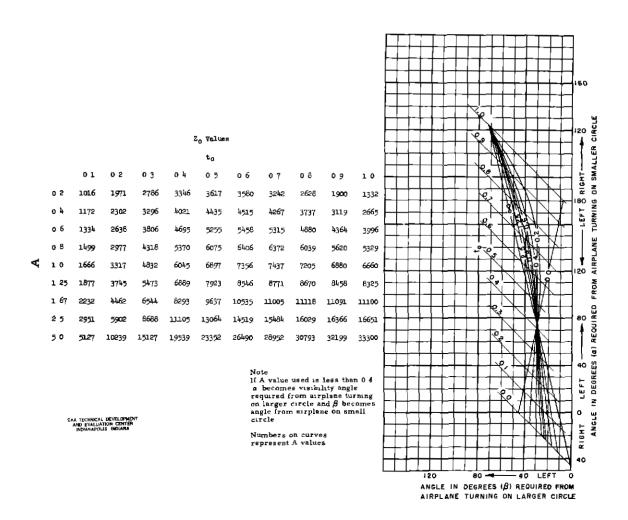


Fig 51 At Collision Point, the Difference in Heading = 135°, R/A = 25, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

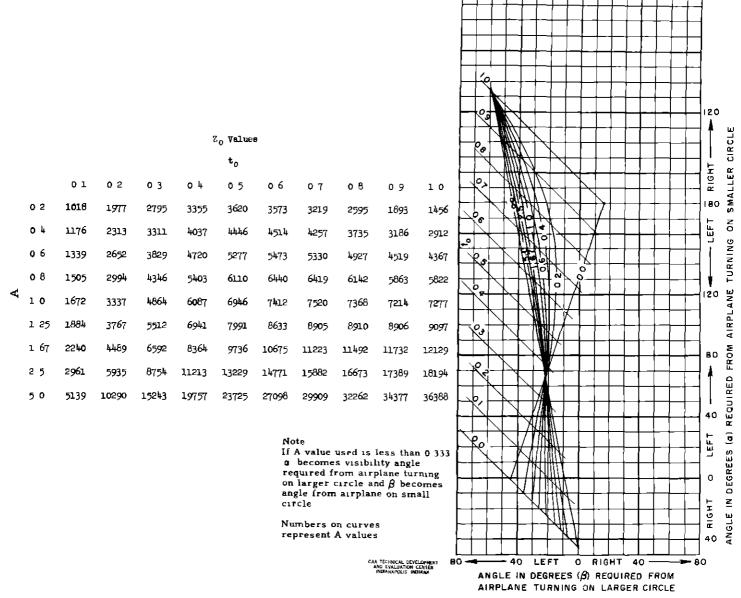


Fig 52 At Collision Point, the Difference in Heading = 135°, R/A = 30, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

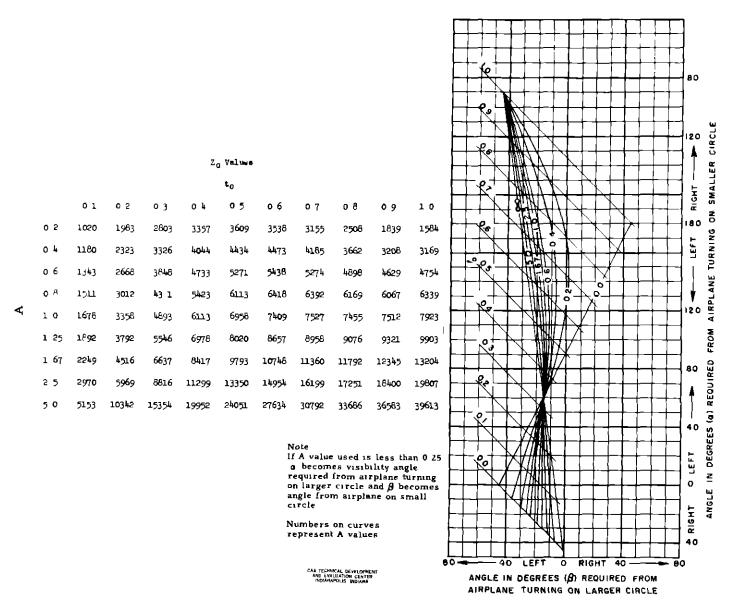
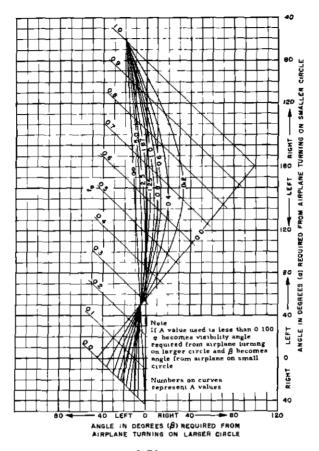



Fig 53 At Collision Point, the Difference in Heading = 135°, R/A = 4 0, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

					2	C _D Value	•		CAR TECHNICAL DEVELOPMENT					
						to			AND EVALUATION CENTER INDIANAPORIS INDIANAPORIS					
		01	0 2	0 3	04	0 5	0 6	07	9.6	0 9	10			
	0 2	1024	1991	2807	3339	3547	3410	2945	2231	1624	1731			
	0 4	1186	2338	3333	4019	կვկե	4285	3898	3344	3074	31463			
	0 6	1353	2686	3860	4705	5165	5225	4969	4613	4599	51.94			
A	08	1521	3036	4387	5395	6002	6200	6098	5937	6143	6925			
	10	1691	3385	4923	6088	6849	7197	7258	7268	7695	8656			
	1 25	1904	3823	5572	6956	7917	84 6 0	8731	8994	9639	10819			
	1 67	22:64	4552	6670	8043	9710	10592	11219	11861	12886	14426			
	2 5	2988	601.4	8866	11321	13324	14904	16247	17628	19390	21640			
	30	53.75	10408	15456	20081	24232	27956	31458	35007	38918	43280			

Fig 54 At Collision Point, the Difference in Heading = 135°, R/A = 10 0, and the Airplane Turning on the Larger Circle is on the Right of the Airplane Turning on the Smaller Circle

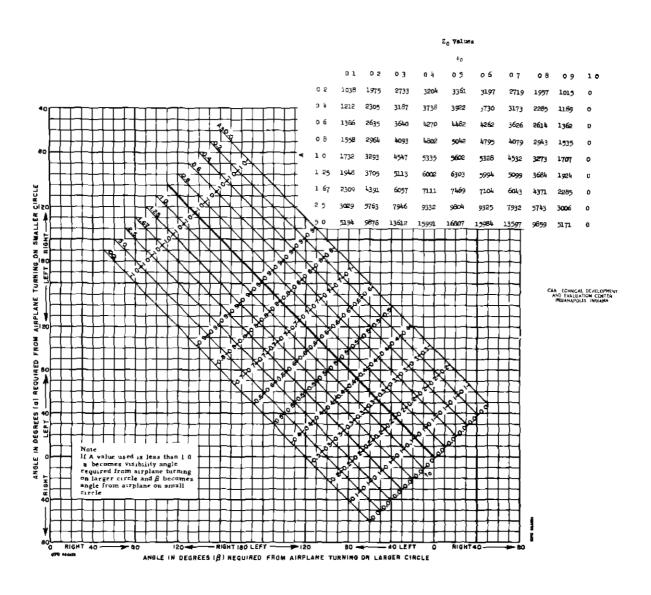


Fig 55 At Collision Point, the Difference in Heading = 180°, R/A = 1 0, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

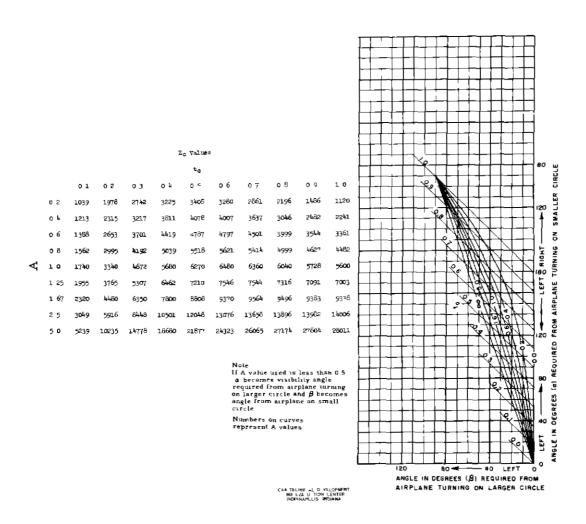


Fig 56 At Collision Point, the Difference in Heading = 180°, R/A = 20, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

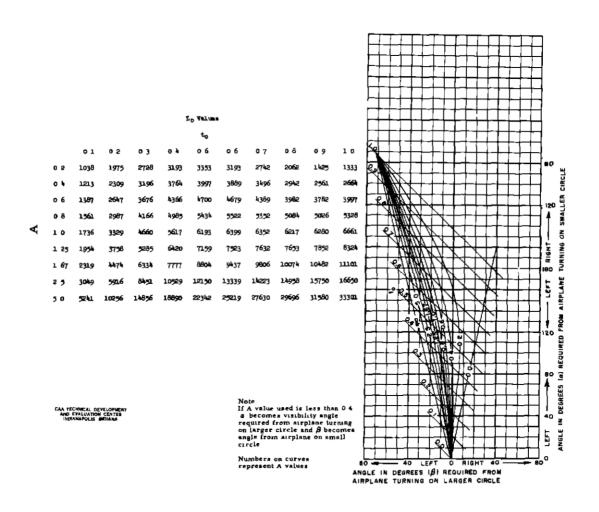


Fig 57 At Collision Point, the Difference in Heading = 180°, R/A = 25, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

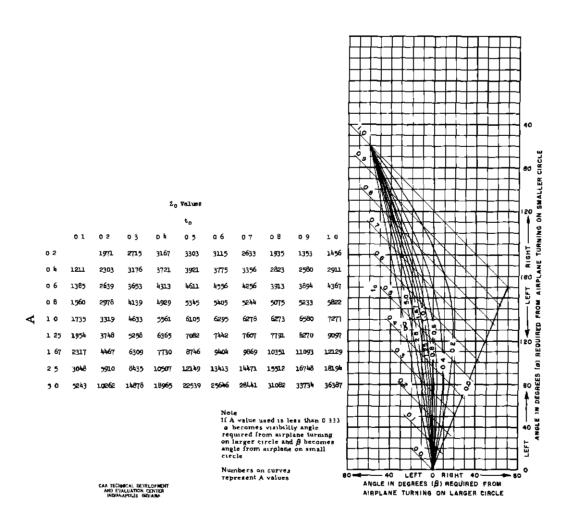


Fig 58 At Collision Point, the Difference in Heading = 180°, R/A = 3 0, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

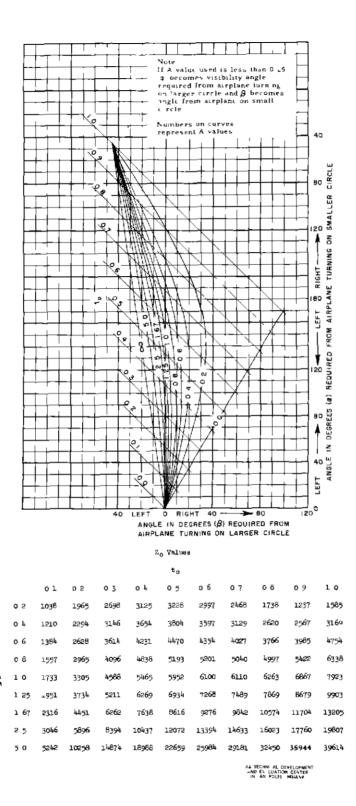
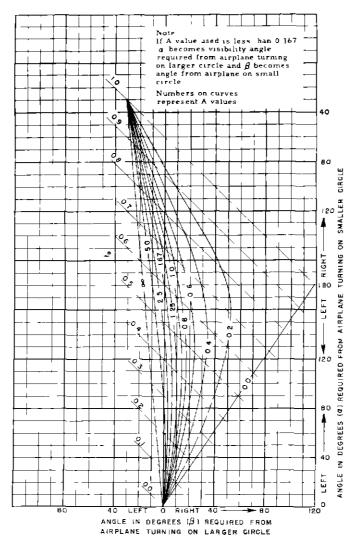



Fig 59 At Collision Point, the Difference in Heading = 180°, R/A = 4 0, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

	$\mathfrak{I}_{\mathcal{O}}$ values										CAA TECHNI AL EVELOPMENT AND EVALUATION CENTER INDIANAPO IS INTIANA		
						to							
		0 1	0 2	03	0 4	0 5	06	0 7	o 8	0 9	1 0		
	0 2	1036	1959	2675	3077	J141	2859	2274	1 50 2	1098	1680		
	o 4	1209	2282	3109	3574	3661	3378	2649	2369	2521	3362		
	06	⊥382	2614	3568	4129	4294	4100	3736	3564	4021	5042		
	08	1557	2949	4044	4723	5000	4936	4765	4851	5536	6723		
∢	1 0	1730	3268	4530	5342	5751	5837	5861	6171	7055	8403		
	1 25	1949	3714	5149	6141	6730	7017	7276	7845	8957	10504		
	1 67	2313	4431	6198	7509	8422	9057	9702	10660	12131	14005		
	2 5	3044	5876	2332	10317	11911	13255	14636	16325	18484	21008		
	50	5239	10242	14834	18931	22637	26105	2 9610	33364	37554	42017		

Fig 60 At Collision Point, the Difference in Heading = 180°, R/A = 60, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

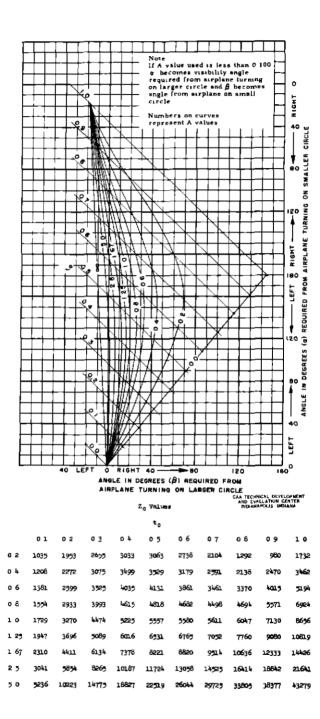


Fig 61 At Collision Point, the Difference in Heading = 180°, R/A = 10 0, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

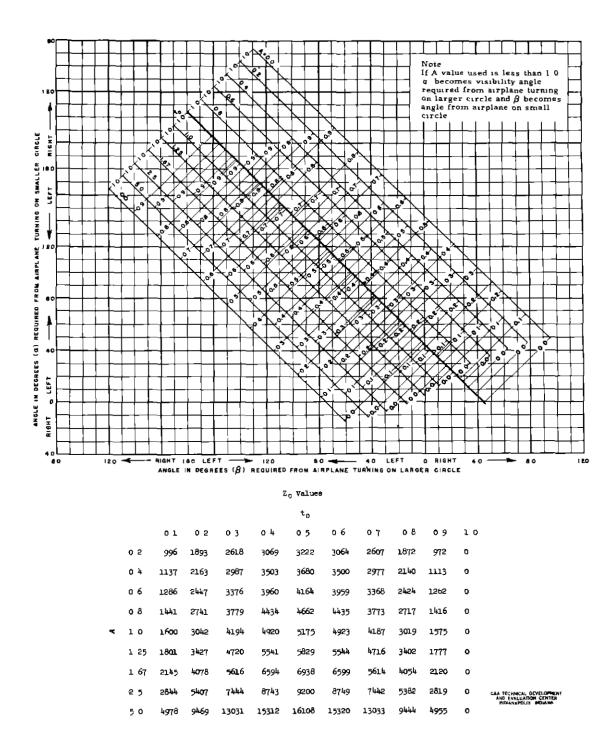
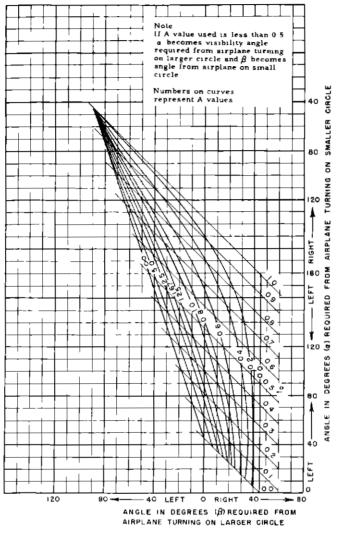
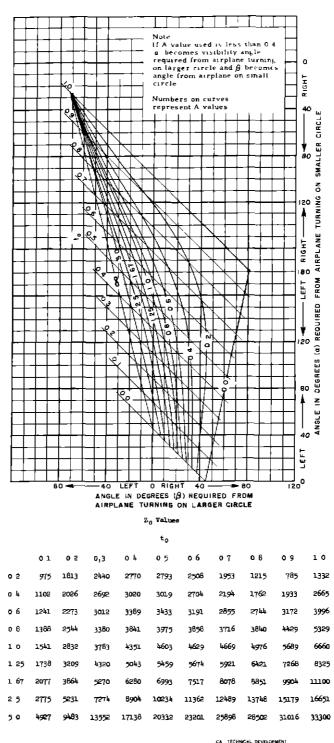




Fig 62 At Collision Point, the Difference in Heading = 135°, R/A = 1 0, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

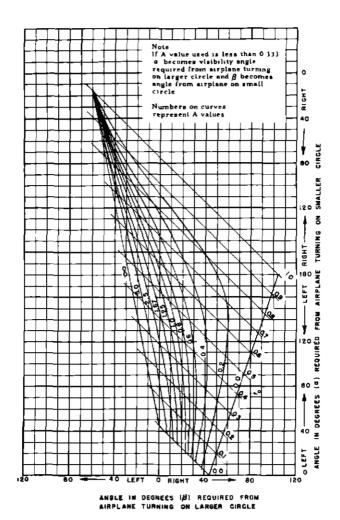

	Z _O Values												
	t _o									CAA TE HNICAL DEVELOPMENT AND EVALLATION CENTER IND AMA OLIS INDIANA			
		0 1	0 2	0 3	0 4	0 5	0 6	07	8 0	0 9	1 0		
	0 2	979	1830	2481	2845	2911	2676	2175	1477	908	1121		
	0 4	1108	2056	2762	3149	3218	2979	2516	1996	1842	55#0		
	06	1250	2312	3102	3550	3674	3497	3149	2840	2899	3361		
	08	1398	2588	3483	4019	4230	4150	3936	3796	3984	82بلية		
4	10	1560	2880	3892	4552	4800	4880	4800	4820	5000	5600		
	1 25	1751	3261	4434	5228	5690	5872	5944	60 83	6452	7004		
	1 67	2091	3918	5384	6449	7172	7607	7918	8256	8747	9337		
	2 5	2789	5284	7372	9023	10292	11227	11974	12652	13349	14005		
	50	4941	9518	13578	17066	20004	22399	24354	25930	27174	28011		

Fig 63 At Collision Point, the Difference in Heading = 135°, R/A = 20, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

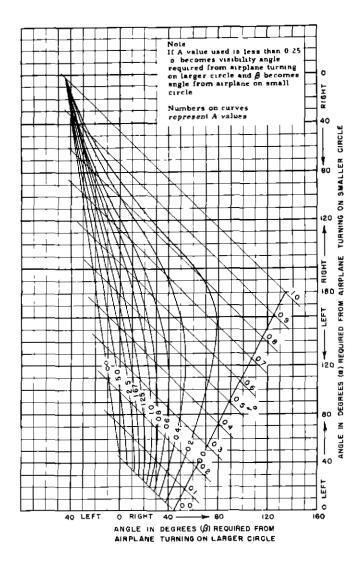

CA TECHNICAL DEVELOPMENT AND EVALUATION CENTER INDIANAPOLIS INDIANA

Fig 64 At Collision Point, the Difference in Heading = 135°, R/A = 25, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

Z _O Values										
CAR TECHNICAL GEVELOPMEN AND EVALUATION CENTER										
	0 1	0 2	0 3	0 #	0 5	0 6		O B	0 9	10
0 2	215	1801	2412	2716	2709	2384	1787	1013	713	1456
a ¥	1098	2007	2642	2926	2869	2494	1944	1590	2001	501 5
0 6	1234	2247	2947	3268	3248	2951	2626	2673	3347	4367
0.8	13 8 1	2513	3304	370 4	3778	3627	3541	3859	4700	5822
< 10	1532	शश	3701	1208	4406	1122	4551	5074	6057	7277
1 25	1729	3172	4234	4899	5274	7702	5873	6611	7753	9097
1 67	2067	3825	5182	6143	6837	7414	8138	ሟጧ	10584	12129
25	2764	51.51	7192	8793	10146	11388	12753	14374	162+6	18194
50	4928	9451	13511	17135	20463	23608	26746	2 9968	33241	36388

Fig 65 At Collision Point, the Difference in Heading = 135°, R/A = 3.0, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

Zo Values										
					t ₀		CAA T AND INC			
	0 1	0 2	0 3	0 4	0 5	06	0 7	08	0 9	10
0.5	969	1787	2375	26k7	2597	2225	1572	738	662	1584
0 4	1092	1979	2574	2799	2666	2206	1597	1364	2098	3169
06	1226	2211	2857	3102	2991	261.9	2318	2599	3550	4754
8 a	1372	2471	3200	3517	3502	3304	3306	3881.	5004	63 3 B
< 10	1522	2751	3588	4009	41.27	4128	4385	51.81	6459	7923
1 25	1717	3122	4115	4696	5009	5255	5786	6815	8278	9903
1 67	2054	3771	5058	59 46	6603	7240	81.68	9548	11309	13204
2 5	2751	5135	7073	8627	9986	11358	12996	15027	17372	19807
50	4903	9403	13431	17075	20531	23965	21587	31483	35563	39613

Fig 66 At Collision Point, the Difference in Heading = 135°, R/A = 40, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

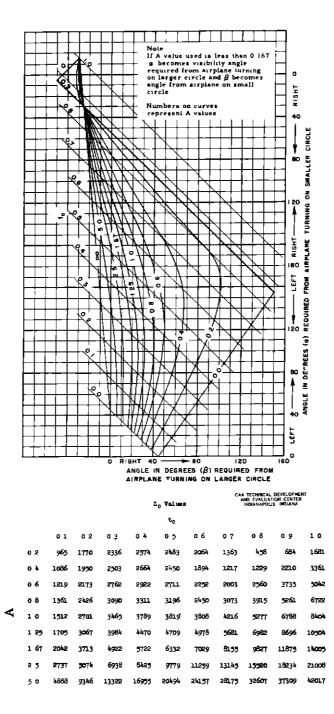


Fig 67 At Collision Point, the Difference in Heading = 135°, R/A = 6 0, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

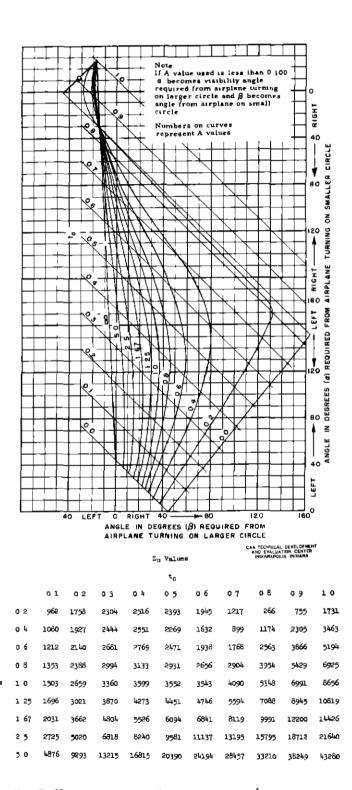


Fig 68 At Collision Point, the Difference in Heading = 135°, R/A = 10 0, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

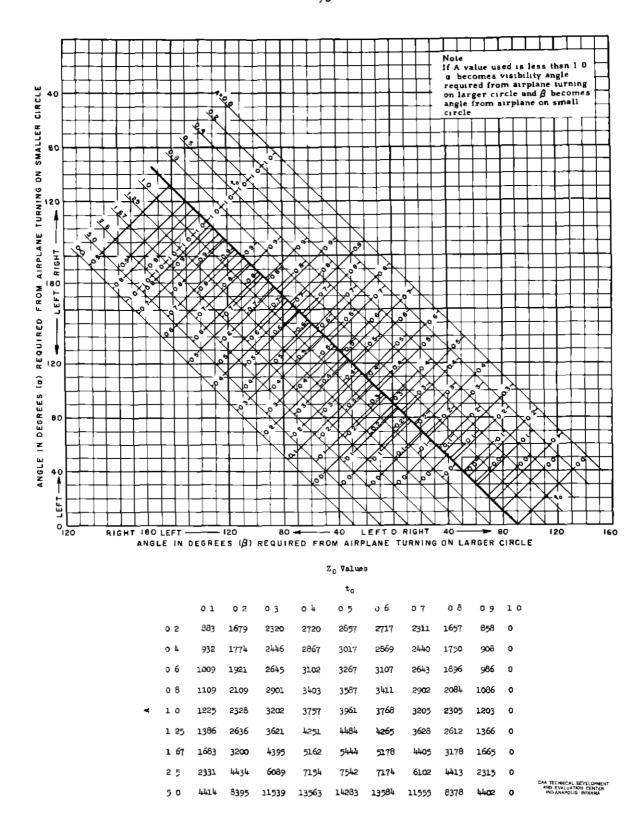


Fig 69 At Collision Point, the Difference in Heading = 90°, R/A = 1 0, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

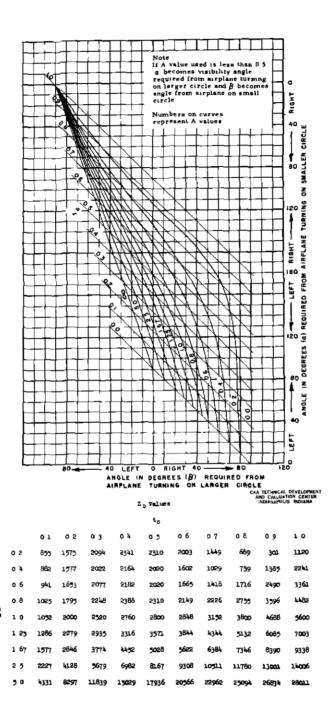


Fig 70 At Collision Point, the Difference in Heading = 90°, R/A = 2 0, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

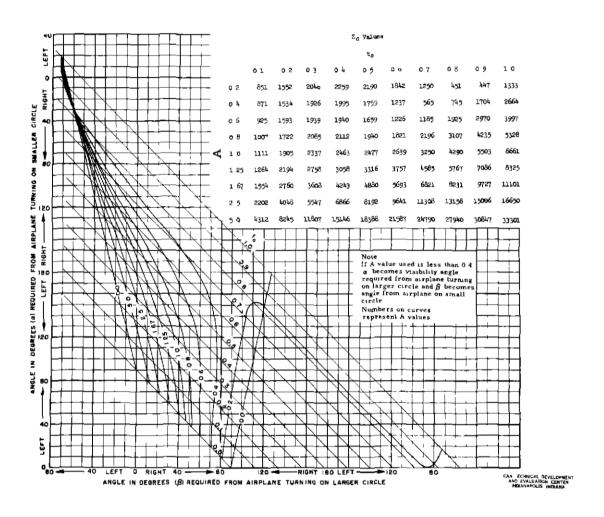


Fig 71 At Collision Point, the Difference in Heading = 90°, R/A = 2 5, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

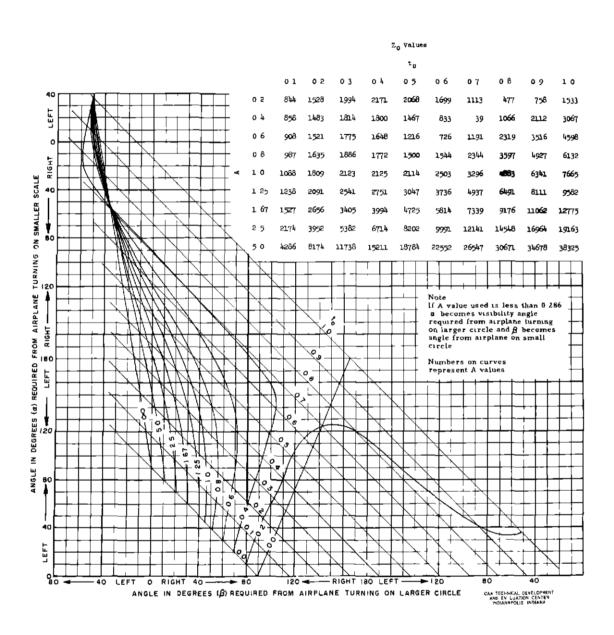


Fig 72 At Collision Point, the Difference in Heading = 90°, R/A = 3 5, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

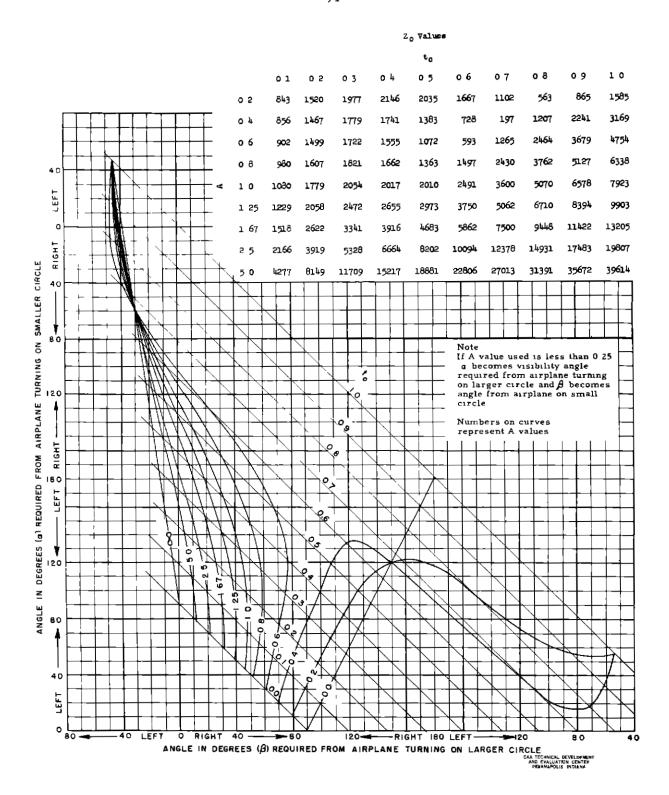


Fig 73 At Collision Point, the Difference in Heading = 90°, R/A = 4 0, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

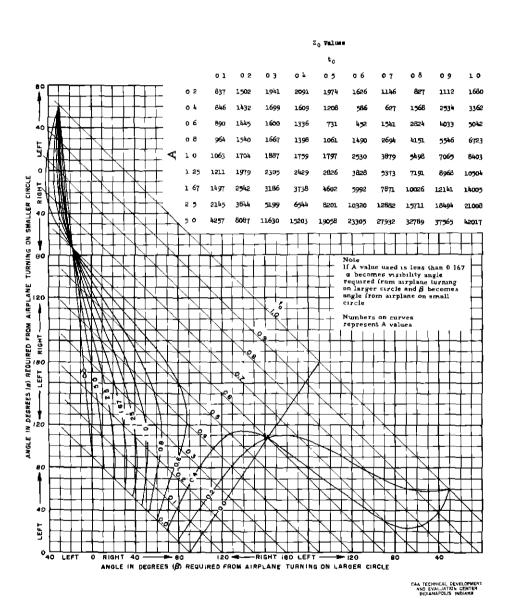


Fig 74 At Collision Point, the Difference in Heading = 90°, R/A = 6 0, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

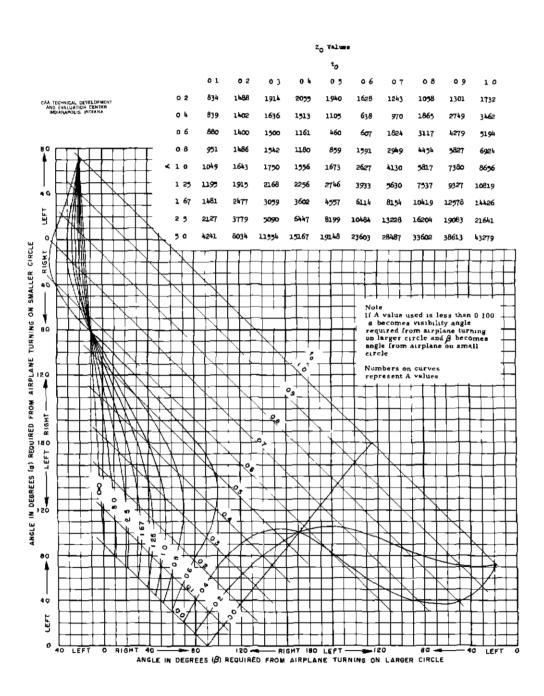


Fig 75 At Collision Point, the Difference in Heading = 90°, R/A = 10 0, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

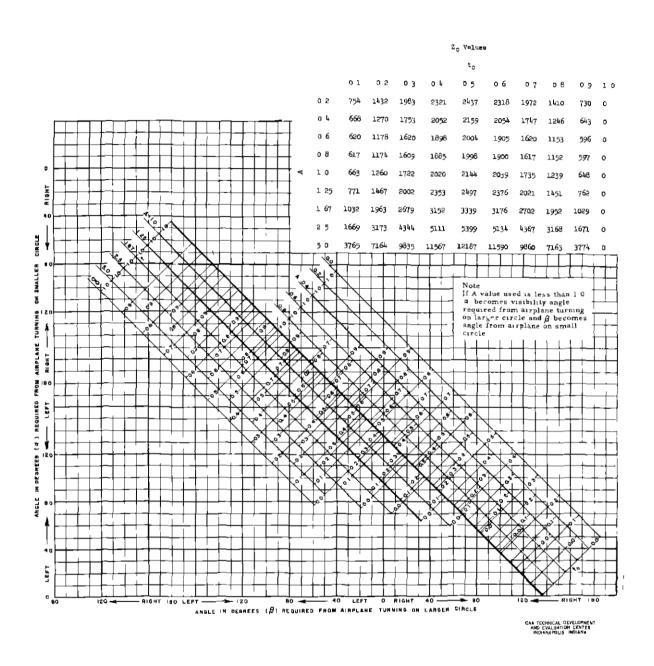


Fig 76 At Collision Point, the Difference in Heading = 45°, R/A = 1 0, and the Airplane Turnir on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

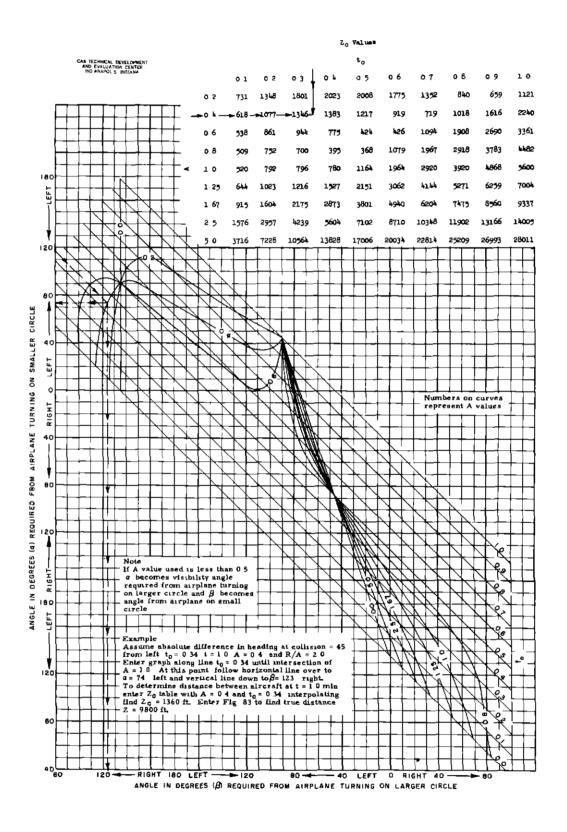


Fig 77 At Collision Point, the Difference in Heading = 45°, R/A = 20, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

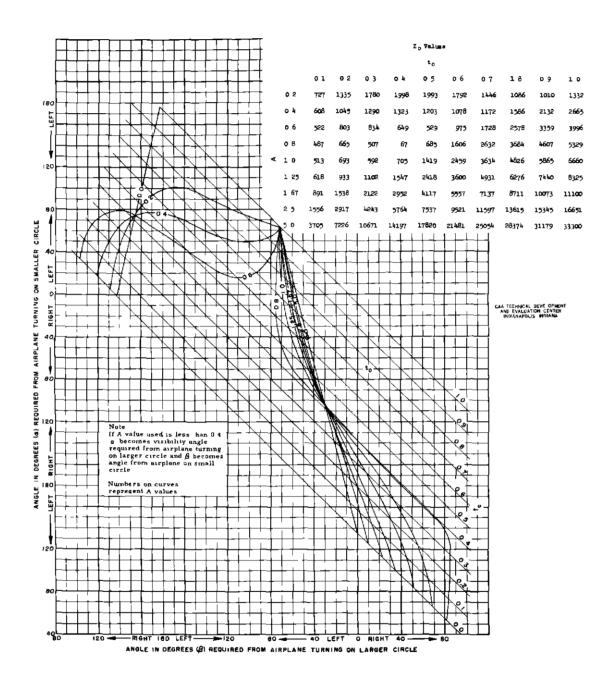


Fig. 78 At Collision Point, the Difference in Heading = 45°, R/A = 25, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

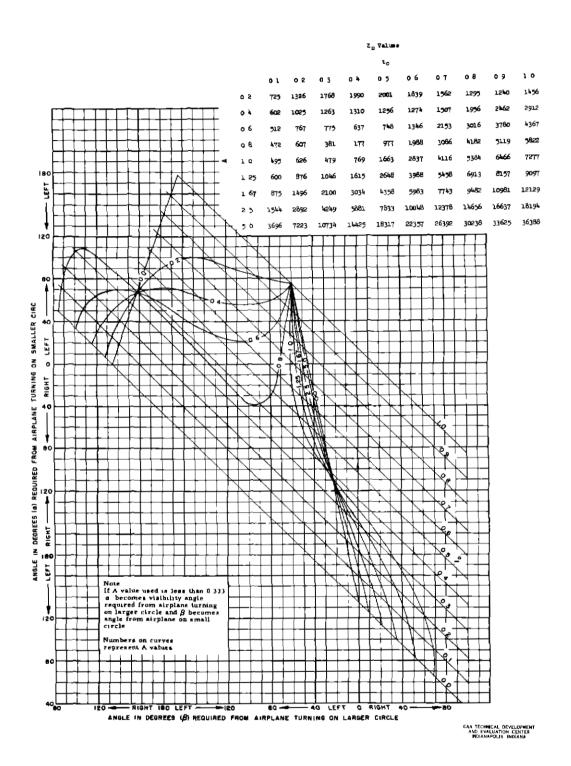


Fig 79 At Collision Point, the Difference in Heading = 45°, R/A = 3 0, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

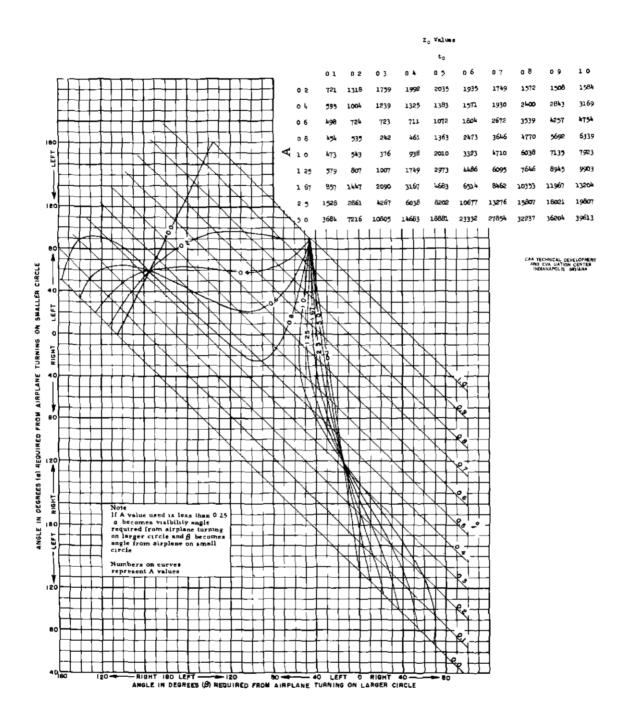


Fig 80 At Collision Point, the Difference in Heading = 45°, R/A = 40, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

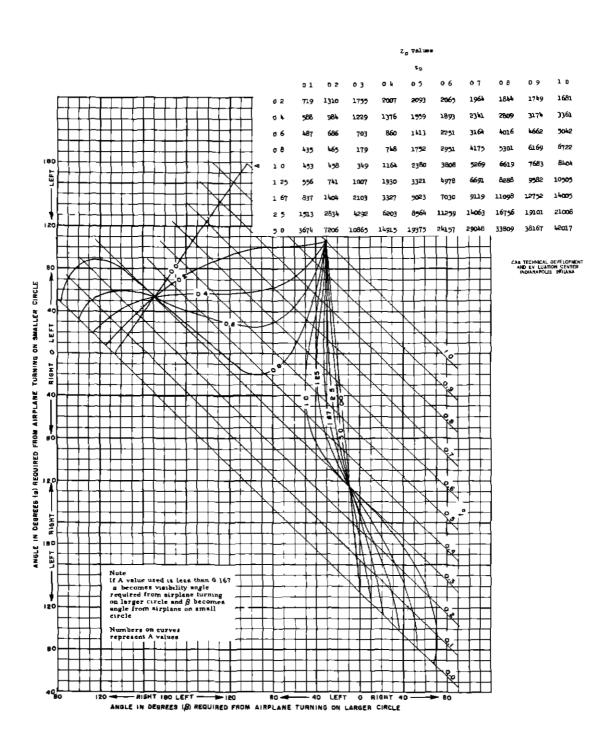


Fig 81 At Collision Point, the Difference in Heading = 45°, R/A = 60, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

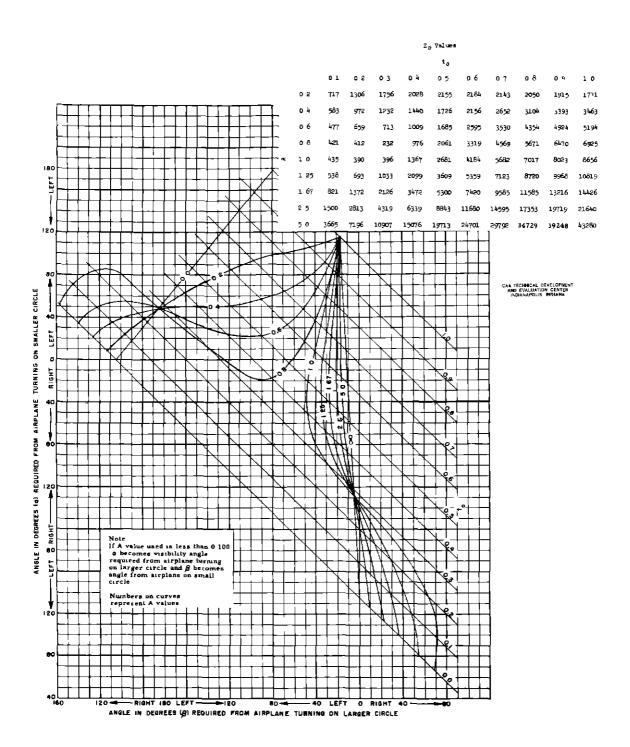


Fig 82 At Collision Point, the Difference in Heading = 45°, R/A = 10 0, and the Airplane Turning on the Larger Circle is on the Left of the Airplane Turning on the Smaller Circle

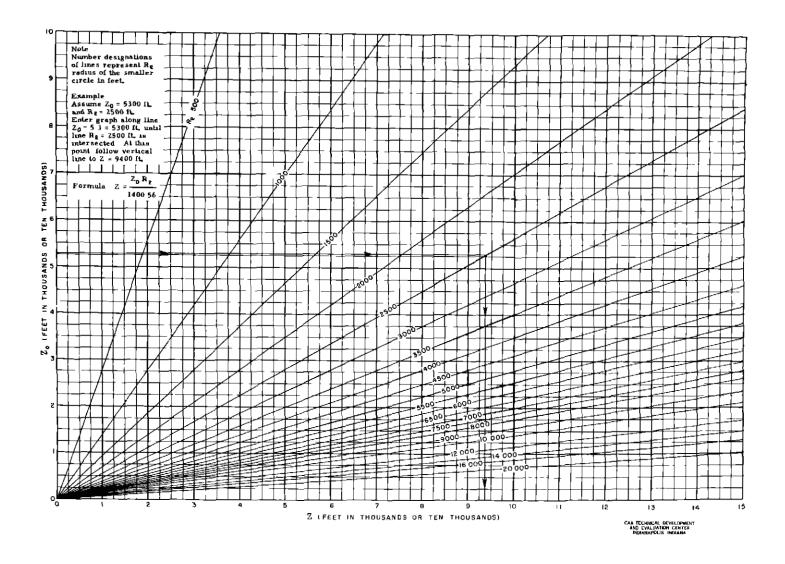


Fig 83 Determination of Distance of Separation for Two Airplanes Turning

CONCLUSIONS

- l It is apparent from studying the visual-angle curves that, to prevent all mid-air collisions, it is necessary for a pilot to be able to see or detect the approach of aircraft from any direction. Since this cannot be accomplished by adding windshield area alone, it must be done by other means.
- 2 Since the visual angle does not change during Collision Conditions A and B, there is no apparent motion of the other aircraft to be observed by either pilot. This is true only if both aircraft are flying on straight courses and at constant speeds. The closing speeds also remain constant.
- 3 This study has pointed out that a severe collision hazard exists where aircraft are flying in the same general direction and at approximately the same speeds. It must also be pointed out, however, that during this critical condition the closing rate is small and, if an auxiliary means of viewing this area were available, the pilots would have sufficient time to execute evasive maneuvers in time to avoid collision.
- 4 In the turning collision conditions, both the visual angles and the closing rate are constantly varying. Under these circumstances, there is apparent relative motion between the aircraft which will tend to increase the noticeability in the peripherial field of vision. When the airplane is turning, however, it is possible for the cockpit structure to completely block out the horizon and, consequently, to block out another aircraft at the same altitude even though the area was cleared as carefully as possible prior to the turn. It is noteworthy that maximum collision protection can be obtained in present-day airplanes only if both pilots clear the area to their rear prior to a turn in either direction.
- 5 In the event of a mid-air collision, the scratch angle or the angle of physical marks on both damaged aircraft, when measured from the longitudinal axis, are the same as the visual-angle requirements of each aircraft to see the other immediately prior to the collision. In making this statement, it is assumed that neither aircraft is deflected or bumped from its original heading during the collision impact.

ACKNOWLEDGEMENTS

Acknowledgement is made to the United States Naval Ordnance Plant, Numerical Analysis Branch, Indianapolis, Indiana, who made the visual-angle curves for Collision Condition C possible by computing the values on their digital electronic computers. Also thanks are due the airport managers and the CAA air traffic controllers at Municipal Airport, Birmingham, Alabama, Weir Cook Municipal Airport, Indianapolis, Indiana, and the Midway Airport, Chicago, Illinois, who co-operated wholeheartedly during flight-path measurements recorded at those airports

APPENDIX I

DERIVATION OF FORMULAS FOR COLLISION CONDITION A

For this condition, two airplanes are assumed to be on a collision course, flying on straight courses in the same horizontal plane, and approaching each other from any direction at any relative speed. Figure 84 shows the physical significance of the horizontal visual angles and distances involved.

Using the law of sines

$$\frac{V_{s}}{\sin \theta} = \frac{V_{c}}{\sin \psi} \tag{31}$$

Solving for $\mathbf{V}_{_{\mathbf{C}}}$ from the law of cosines

$$V_{c} = \sqrt{V_{s}^{2} + V_{f}^{2} - 2 V_{s} V_{f} \cos \psi}$$
 (32)

Substituting Equation (32) in Equation (31)

$$\sin \theta = \frac{V_s \sin \psi}{\sqrt{V_s^2 + V_f^2 - 2 V_s V_f \cos \psi}}$$
(33)

Since A = $\frac{V_s}{V_f}$, Equation (33) may be written

$$\theta = \arcsin \frac{A \sin \psi}{\sqrt{A^2 + 1 - 2A \cos \psi}}$$
 (2)

From the geometry of Fig 84,

$$\phi = 180^{\circ} - (\psi + \theta)$$

Solving for the distance between the airplanes at time t minutes before collision, we have, using the law of sines,

$$Z = \frac{V_{s} t \sin \psi}{60 \sin \theta} \tag{3}$$

where 60 is the factor for changing mph to mpm

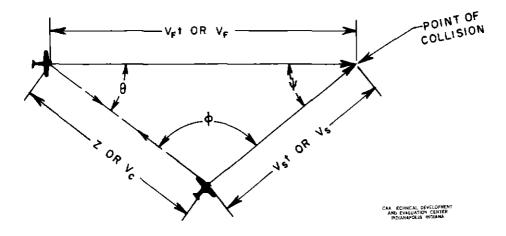


Fig 84 Vector Diagram for Derivation of Formulas for Level-Flight Collision Condition

DERIVATION OF FORMULAS FOR COLLISION CONDITION B

For this condition, two airplanes are assumed to be on a collision course with one airplane climbing and one airplane descending, with both airplanes climbing, or with both airplanes descending, also, one airplane can be flying at level cruise and the other one either climbing or descending Figure 85 shows the physical significance of the visual angles and of the distances involved in this condition

In order to use the visual-angle chart designed for Condition A in determining the horizontal visual angles required from the climbing and descending airplanes, VCL., the vertical projection of the climbing velocity onto the horizontal plane passing through the collision point, and VDH, the vertical projection of the descending velocity onto the horizontal plane passing through the collision point, should be determined, however, for simplicity the values of $V_{
m CL}$ and V_D are used. In using V_{CL} and V_D instead of V_{CL_H} and V_{D_H} , very little error is introduced into the visual angles obtained since the angles at which airplanes climb and descend are relatively small, and small climb and descent angles make the difference very small between ${
m v_{CL}}$ and ${
m v_{CL_H}}$ or ${
m v_D}$ and ${
m v_{D_H}}$. Consequently, ${
m v_{CL}}$ and ${
m v_D}$, either of which can be entered as slower or faster, and ψ , which is the absolute difference in heading, can be used in Fig. 2 for determining the horizontal visual angles with a relative degree of accuracy

Referring to Fig 85 and using the law of sines

$$V = \frac{V_{s} \sin \psi}{\sin \theta} \tag{4}$$

Vs, the velocity of the slower airplane, is VD in the figure

Solving for ho , the vertical angle measured from the horizon and required from either airplane,

$$\rho = \arctan \frac{\Delta_1 \pm \Delta_2}{88V}$$
 (5)

If both airplanes are descending or climbing, then Δ_1 and Δ_2 are added, and if one is descending and one is climbing, then the difference between Δ_1 and Δ_2 is used Solving for Z, the distance between the airplanes at time t measured along the line of sight,

$$Z = \frac{Vt}{60 \cos \rho} \tag{6}$$

The factor 60 is used to change mph to mpm

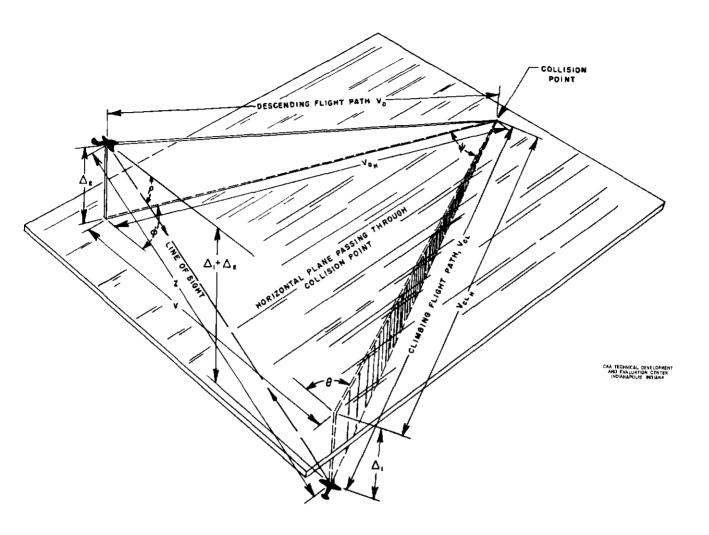


Fig. 85 Vector Diagram for Derivation of Formulas for Climb-and-Descent Conditions

DERIVATION OF FORMULAS FOR COLLISION CONDITION C

For this condition, two airplanes are assumed to be on a collision course, one flying straight and level (cruising) and the other making a left turn. Figure 86 shows the physical significance of the horizontal visual angles and of the distances involved in this condition. Horizontal visual angles are measured from straight ahead of the pilot at the time of investigation.

Locating the center of the circle of the turning airplane with respect to the cruising airplane (the origin of the X and Y axis)

$$a = R_T \sin \psi \tag{34}$$

Distance traveled, from time t to collision,

$$D = V_c t$$

$$E = R_T \cos \psi$$

since

$$b = D + E$$

Then

$$b = V_C t + R_T \cos \psi \tag{35}$$

If K = rate of turn, in degrees per minute,

Then

 $\theta = Kt$

Also.

$$\theta = \psi + \omega$$

Therefore

$$\omega = Kt - \psi \tag{14}$$

The co-ordinates of the turning airplane with respect to the cruising airplane at time t before collision are then given by.

$$X = b - X_1$$

Also

$$X_1 = R_T \cos \omega$$

Substituting for b, Equation (35), and X1

$$X = V_{C}t + R_{T}(\cos \psi - \cos \omega)$$
 (12)

$$Y = a + Y_1$$

Also

$$Y_1 = R_T \sin \omega$$

Substituting for a, Equation (34), and Y₁

$$Y = R_{T}(\sin \psi + \sin \omega) \tag{13}$$

Solving for the horizontal visual angle a, measured from straight ahead of the cruising airplane,

$$\alpha = \arctan \frac{Y}{X}$$
 (9)

Substituting in Equation (12) and Equation (13)

$$\alpha = \arctan \frac{R_{T}(\sin \psi + \sin \omega)}{V_{c}t + R_{T}(\cos \psi - \cos \omega)}$$
(36)

From the geometry of Fig. 86 the horizontal visual angle eta , measured from straight ahead of the turning airplane, is

$$\beta$$
 + (90° - α) + (90° - ω) = 90°

Simplifying

$$\beta \approx \alpha + \omega - 90^{\circ} \tag{10}$$

Distance between airplanes at time t is

$$Z = \sqrt{X^2 + Y^2} \tag{11}$$

After developing the formulas, it was noted that several visual-angle charts would be required to represent all possible combinations that could occur between the variables involved in this condition. To construct a minimum number of charts that represent all possible combinations of the variables, the law of geometric similarity was applied. Figures 87 and 88 are geometrically

similar Therefore, the corresponding angles are equal and the corresponding sides are proportional

The charts for Condition C were developed with the use of assumed specific values of V_{T_0} , V_{c_0} , t_0 , R_{T_0} , and ψ_0 . These parameters are shown in Fig. 87. The actual case to be investigated is represented by Fig. 88. It is necessary, then, for the reader to establish the correct proportion between the parameters shown in Fig. 87 and the parameters used in the actual case shown in Fig. 88 in order to enter the charts.

To establish these proportions, the following formulas are obtained from the geometric similarity between Figs 87 and 88

$$\alpha_0 = \alpha$$

$$\beta_0 = \beta$$

$$\theta_0 = \theta$$

Also

$$\frac{Z_0}{Z} = \frac{R_0}{R_T}$$

$$\frac{\mathbf{v_{c_0}}}{\mathbf{v_{T_0}}} = \frac{\mathbf{v_c}}{\mathbf{v_T}}, \text{ and}$$

$$\Psi_{n} = \Psi$$

The parameters needed for entering the visual-angle charts are A, the absolute difference in heading at collision as related to ψ , and t_0 , the time before collision

Since A =
$$\frac{v_{c_0}}{v_{T_0}}$$
, $\frac{v_{c_0}}{v_{T_0}} = \frac{v_{c}}{v_{T}}$, and $\psi_0 = \psi$, then t_0 is the only unknown

From Figs 87 and 88, $\theta_0 = K_0 t_0$ and $\theta = Kt$, where K or $K_0 = \text{rate of turn, in degrees per minute}$ Since $\theta_0 = \theta$, then

$$t_0 = \frac{Kt}{K_0} \tag{37}$$

If $V_{T'}$ is in mph and K (rate of turn) is in degrees per minute,

$$K = \frac{5042 \ 03V_{T}}{R_{T}}$$
 (38)

and

$$\tan \lambda = \frac{0.067 v_T^2}{R_T} \tag{15}$$

Substituting Equation (15) in Equation (38),

$$K = \frac{75,254 \, 18 \, \tan \lambda}{V_{\rm T}} \tag{39}$$

Substituting Equation (39) and Equation (37),

$$t_0 = \frac{75,254 \, 18 \, \tan \, \lambda \, t}{K_0 V_T} \tag{40}$$

In computing the points necessary for drawing the curves, the following values of the parameters were used

 K_0 = 360 degrees per minute, R_0 = 2801 13 feet, and V_{T_0} = 200 mph

The following values of the independent variables used

$$\Psi_0$$
 = 0° to 360° in 30° intervals

$$\frac{V_{c_0}}{V_{T_0}}$$
 is used instead of V_{c_0}

$$\frac{V_{c_0}}{V_{T_0}}$$
 = 02, 04, 06, 08, 10, 125, 167, 25, 50, ∞

 $t_0 = 0, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10$

Since the value $K_0 = 360$ degrees per minute was held constant, then Equation (40) becomes

$$t_0 = \frac{209 \ 2 \ \tan \lambda \ t}{V_T}$$
 (8)

Since the value $R_0 = 2801 1$ feet was held constant, then

$$Z = \frac{Z_0^R T}{2801 \ 1} \tag{16}$$

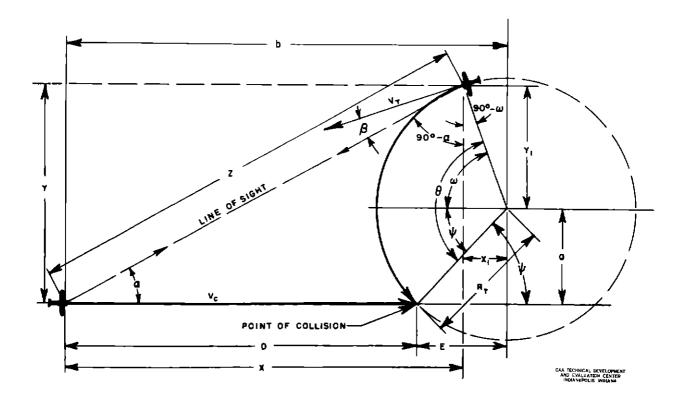
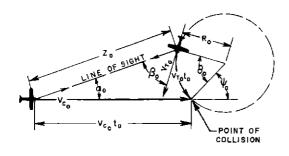



Fig 86 Vector Diagram for Derivation of Formulas for One Airplane Turning Left and One Airplane Flying Straight and Level

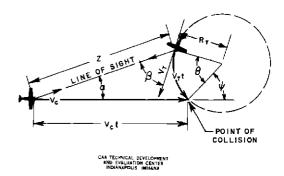


Fig 87 Vector Diagram Showing Similarity to Fig 88 Vector Diagram Showing Similarity Fig 88 for Derivation of Formulas for One Airplane Turning Left and One Airplane Flying Straight and Level

to Fig 87 for Derivation of Formulas for One Airplane Turning Left and One Airplane Flying Straight and Level

DERIVATION OF FORMULAS FOR COLLISION CONDITION D

For this condition, two airplanes are assumed to be on a collision course, both airplanes making a left turn. Figure 89 shows the physical significance of the horizontal visual angles and of the distances involved in this condition. The horizontal visual angles are measured from straight anead of the pilot at the time of investigation.

Locating the center of the larger circle with respect to the point of collision or the origin of the X and Y axis

$$a = R_1 \sin \psi \tag{41}$$

$$b = R_1 \cos \psi \tag{42}$$

$$\boldsymbol{\omega}_{0} = \mathbf{K}_{0} \mathbf{t} \tag{28}$$

Where

Kn = the rate of turn of the airplane turning on the smaller circle, in degrees per minute

t = time of investigation before collision, in minutes

Also

$$\boldsymbol{\omega}_1 = \mathbf{K}_1 \mathbf{t} - \boldsymbol{\psi} \tag{25}$$

Where

K₁ = the rate of turn of the airplane turning on the larger circle, in degrees per minute

t = the time of investigation before collision, in minutes

The co-ordinates of the airplane turning on the smaller circle, with respect to the airplane turning on the larger circle at time t, are then given by

$$X_0 = R_0 (1 - \cos \omega_0) \tag{26}$$

$$Y_0 = -R_0 \sin \omega_0 \tag{27}$$

And the co-ordinates of the airplane turning on the larger circle are

$$X_1 = b - R_1 \cos \omega_1$$

When Equation (42) is substituted for b,

$$\mathbf{X}_1 = \mathbf{R}_1 \left(\cos \psi - \cos \omega_1\right) \tag{23}$$

$$Y_1 = a - R_1 \sin \omega_1$$

When Equation (41) is substituted for a,

$$Y_1 = R_1 \left(\sin \psi - \sin \omega_1 \right) \tag{24}$$

When these co-ordinates are used, the following is derived

$$\tan \theta = \frac{Y_1 - Y_0}{X_0 - X_1} \tag{29}$$

Substituting in Equations (26), (27), (23), and (24)

$$\theta = \arctan \frac{R_1 (\sin \psi - \sin \omega_1) + R_0 \sin \omega_0}{R_0 (1 - \cos \omega_0) - R_1 (\cos \psi - \cos \omega_1)}$$
(43)

In solving for a, the horizontal visual angle measured from straight ahead of the airplane turning on the smaller circle,

$$\alpha = \omega_0 - \theta - 90^{\circ} \tag{20}$$

In solving for β , the horizontal visual angle measured from straight ahead of the airplane turning on the larger circle,

$$\beta = \omega_1 - \theta + 90^{\circ} \tag{21}$$

The distance between airplanes at time t is as follows:

$$Z = \sqrt{(X_0 - X_1)^2 + (Y_1 - Y_0)^2}$$
 (22)

To construct a minimum number of visual-angle charts to represent the variables involved in this condition, the same law of geometric similarity is applied as was explained in detail in the derivation of formulas for Collision Condition C. In this case the similarity between Figs. 90 and 91 is used.

$$t_0 = \frac{209 \ 2 \ \tan \lambda \ t}{V_T} \tag{8}$$

Where

$$v_{T} = v_{T_{2}}$$

$$\lambda = \lambda_2$$

Also

$$Z = \frac{R_2 Z_0}{1400 56} \tag{30}$$

In computing the points necessary for drawing the curves, the following values of the parameters were used

Held constant $K_0 = 360$ degrees per minute, $R_0 = 1400$ 56 feet, $V_{T_0} = 100$ mph

The following values of the independent variables were used

$$\psi_0 = 0^\circ$$
, 45°, 90°, 135°, 180°, 225°, 270°, 315°

$$A = \frac{V_{T_1}}{V_{T_0}} = 0, 0 2, 0 4, 0 6, 0 8, 1 0, 1 25, 1 67, 5 0, \infty$$

R/A = 10, 20, 25, 30, 35, 40, 6, 8, 10

Note
$$R/A = \frac{R_1/R_0}{V_{T_1/V_{T_0}}}$$

Formulas Needed to Determine Visual Angles and Distances for Two Airplanes on a Collision Course While Flying in the Horizontal Plane and Turning in Opposite Directions (Derivation is Similar to Two Airplanes Turning in Same Direction)

$$\omega_0 = -K_0 t \tag{44}$$

$$\omega_1 = \psi + K_1 t \tag{45}$$

$$\tan \theta = \frac{R_1 (\cos \psi - \cos \theta_1) - R_0 (1 - \cos \omega_0)}{R_1 (\sin \psi - \sin \omega_1) + R_0 \sin \omega_0}$$
(46)

$$a = \omega_0 + \theta + 180^{\circ} \tag{47}$$

$$\beta = \omega_1 + \theta + 180^{\circ} \tag{48}$$

$$Z = \frac{X}{\sin \theta} \tag{49}$$

$$X = R_{1} (\cos \psi - \cos \omega_{1}) - R_{0} (1 - \cos \omega_{0})$$
 (50)

Where

R₁ = Radius of the larger turning circle, in feet

Ro = Radius of the smaller turning circle, in feet

 \mathbf{K}_0 = Rate of turn of the airplane on the smaller circle, in degrees per minute

K₁ = Rate of turn of the airplane on the larger circle, in degrees per minute

t = Time of investigation prior to collision, in minutes

a = Visual angle required from the airplane flying on the smaller circle to see the airplane on the larger circle at time t, in degrees

β = Visual angle required from the aircraft flying on the larger circle to see the airplane flying on the smaller circle at time t, in degrees

Z = Distance between the airplanes at time t, in feet

 ψ = Difference in heading at collision point as established in Table IV

TABLE IV RELATIONSHIP BETWEEN ψ AND THE ABSOLUTE DIFFERENCE IN HEADING AT COLLISION POINT FOR TWO AIRPLANES TURNING IN OPPOSITE DIRECTION

Difference in Heading at Collision (degrees)	Condition	Value of ↓ in Formulas (degrees)
180		0
90	With the airplane turning on the larger circle on the left of the airplane turning on the smaller circle at collision point	90
0		180
90	With the airplane turning on the larger circle on the right of the airplane turning on the smaller circle at collision point.	270

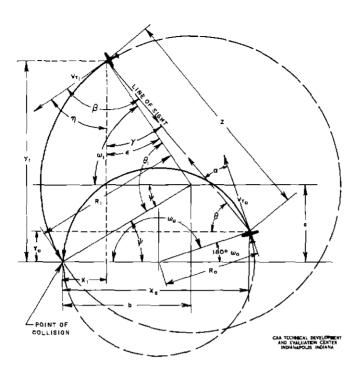


Fig 89 Vector Diagram for Derivation of Formulas for Two Airplanes Turning Left

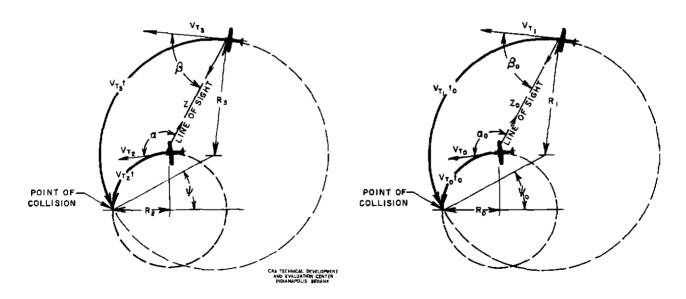


Fig 90 Vector Diagram Showing Similarity Fig 91 Vector Diagram Showing Similarity to Fig 91 for Derivation of Formulas ulas for Two Airplanes Turning Left teft

APPENDIX II

FLIGHT-PATH ANALYSIS

The flight paths that are shown in Figs 92 through 108 are actual samples of the typical flight paths of most types of aircraft. They were made so that a better understanding of aircraft flight paths in the vicinity of airports would be possible. Day and night flights were recorded.

Figures 92 through 96 show flight paths that were recorded at Indianapolis, Indiana The Indianapolis Weir Gook Municipal Airport was considered to be the average airport with respect to traffic and terrain conditions

Figures 97 through 101 show flight paths that were recorded at the Birmingham Municipal Airport at Birmingham, Alabama This airport was selected because of its rough terrain immediately surrounding the airport A 20-foot-increment elevation-contour grid is overlayed on the airport Figure 110 shows the mountainous terrain at Birmingham Airport

Figures 102 through 108 show flight paths recorded at the Chicago Midway Airport at Chicago, Illinois This airport was selected because of the large number of aircraft that use it

RECORDING PROCEDURE

Three sighting stations were employed to record the aircraft flight paths. Each sighting station was equipped with a David White Company Theodolite Model No. 6061, one two-way radio, one stop watch, and two personnel to man the station. A typical sighting station is shown in Fig. 109.

The sighting stations were located on each airport as far apart as possible (3000-foot minimum) and as near the formation of an equilateral triangle as terrain and obstructions permitted. In all cases, each sighting station was visible from the others to permit azimuth triangulation readings and altitude information. The theodolites were leveled and the azimuth scale was zeroed on a point that was visible from all three stations. This point in most cases was the control tower on the airport. Each station recorded elevation and azimuth locations of another common point in order to obtain further reference for accurately locating the sighting stations.

Upon sighting an approaching aircraft, radio contact with the other two stations was made and stop watches were synchronized. Azimuth and elevation readings of the aircraft were made at 15-second intervals. Later, these points were plotted and the curves were drawn.

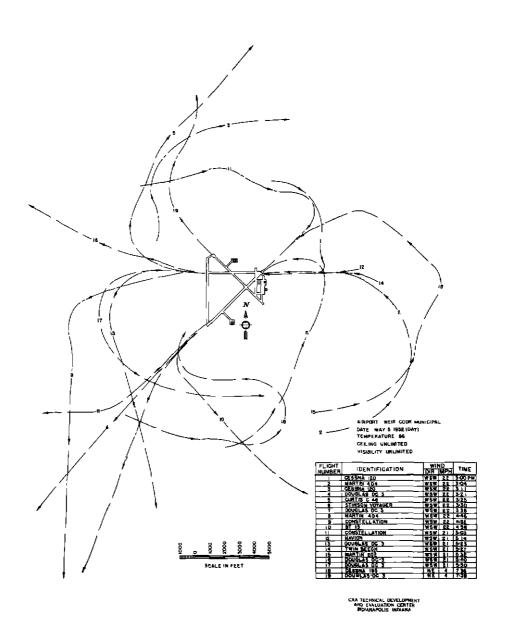


Fig 92 Typical Flight Paths in the Vicinity of Airports

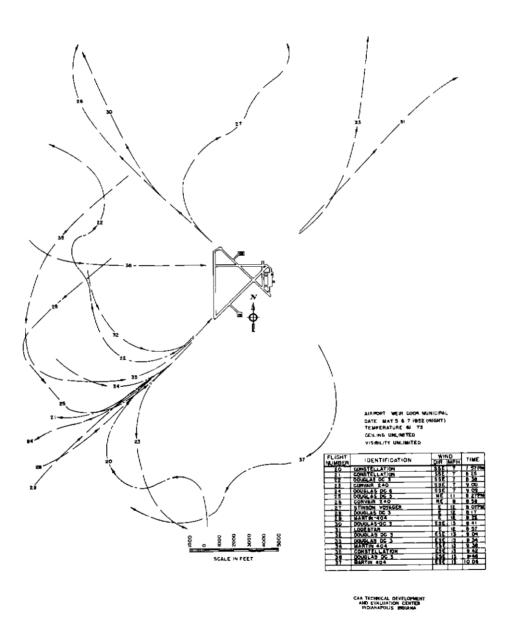


Fig 93 Typical Flight Paths in the Vicinity of Airports

Fig 94 Typical Flight Paths in the Vicinity of Airports

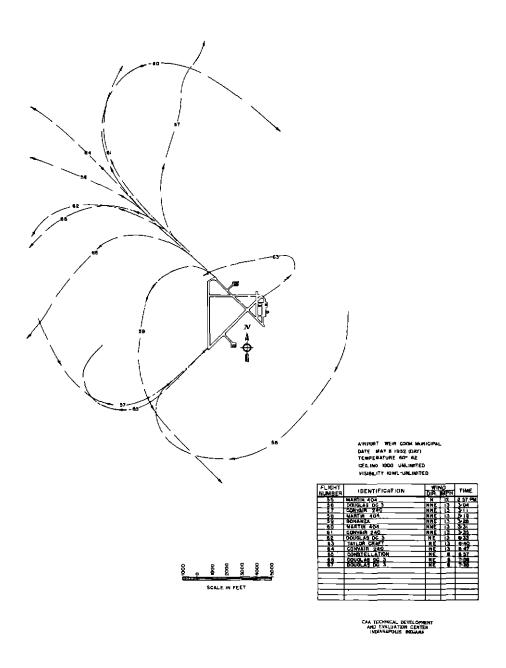


Fig 95 Typical Flight Paths in the Vicinity of Airports

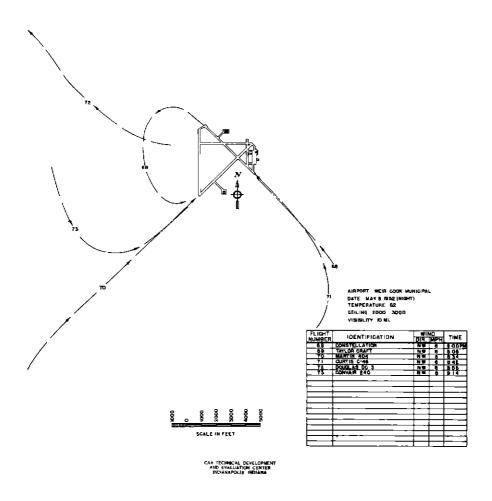


Fig 96 Typical Flight Paths in the Vicinity of Airports

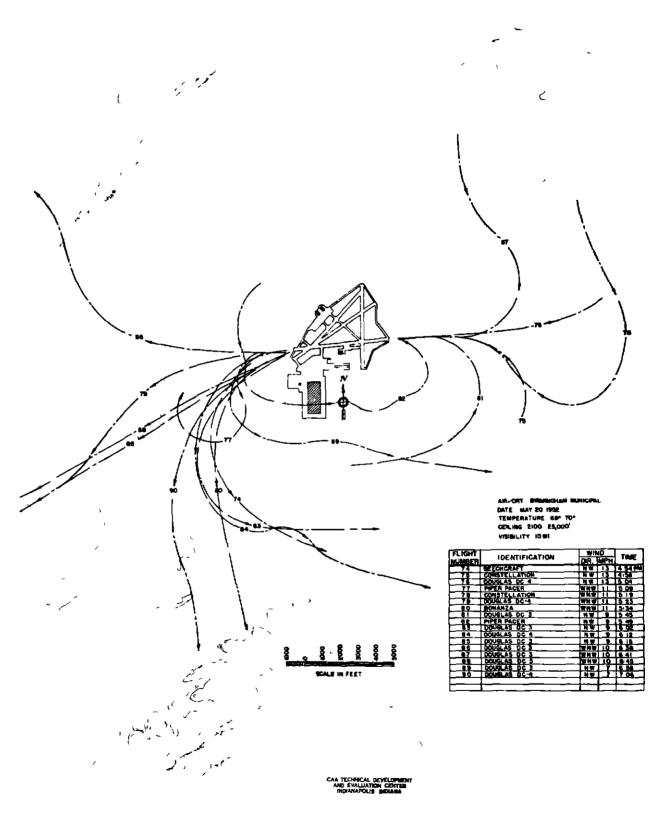


Fig 97 Typical Flight Paths in the Vicinity of Airports

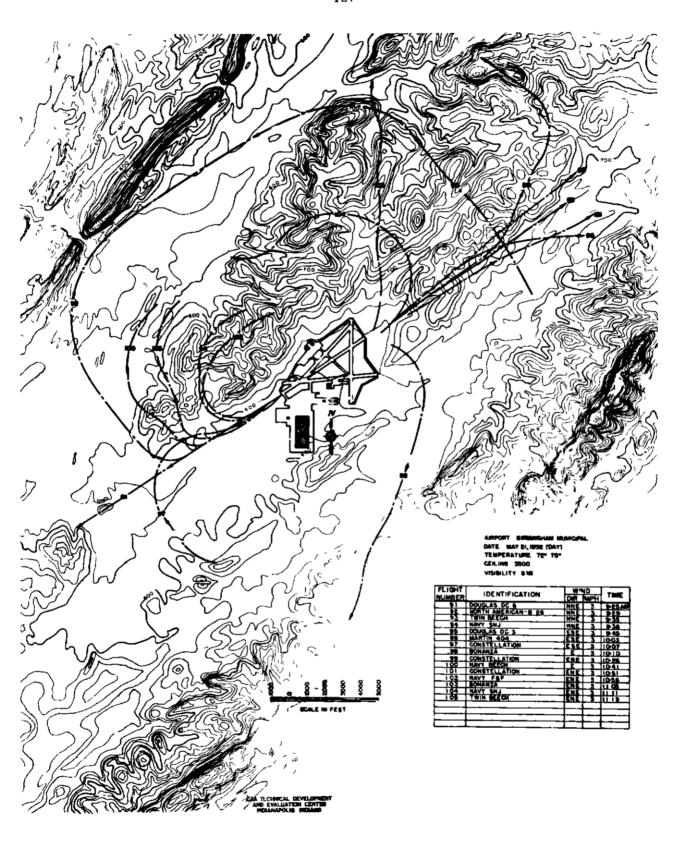


Fig 98 Typical Flight Paths in the Vicinity of Airports

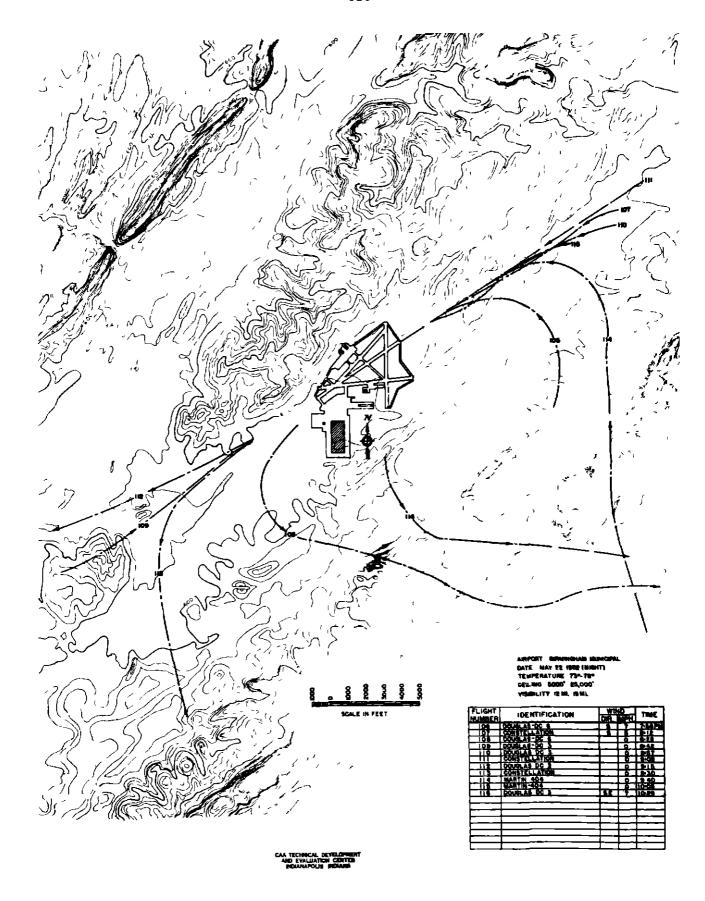


Fig 99 Typical Flight Paths in the Vicinity of Airports

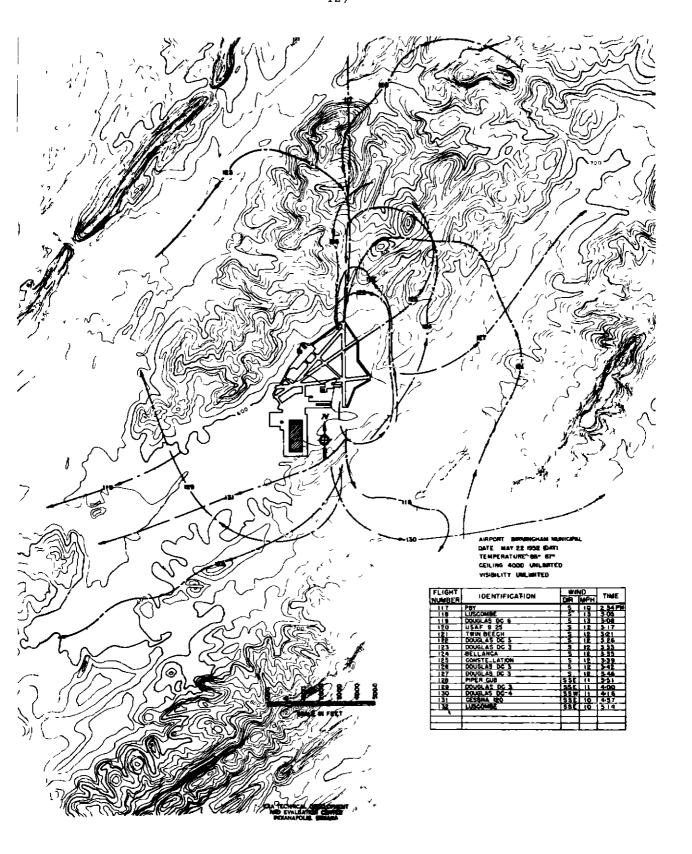


Fig 100 Typical Flight Paths in the Vicinity of Airports

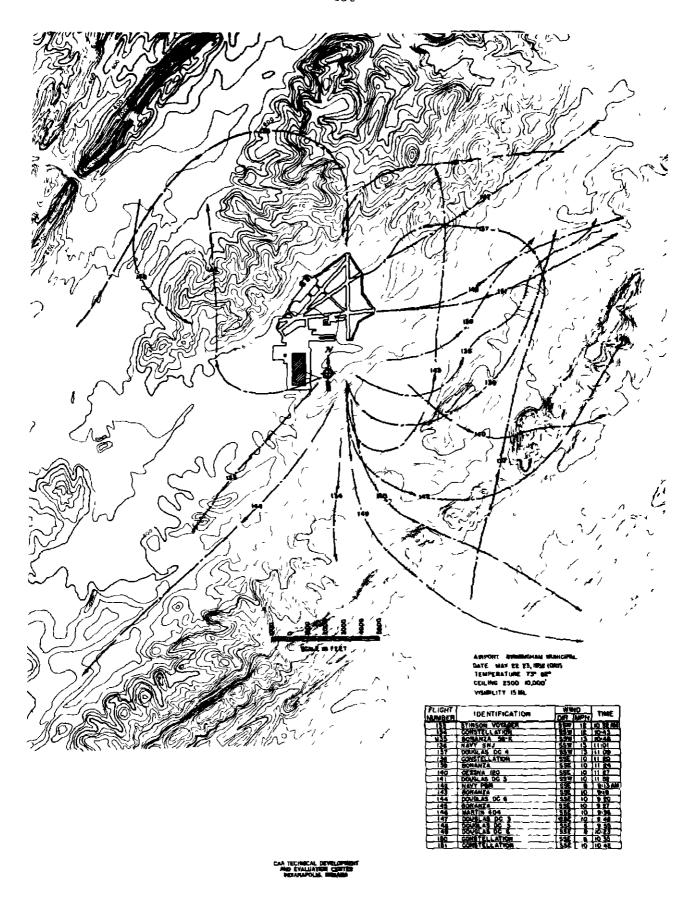


Fig 101 Typical Flight Paths in the Vicinity of Airports

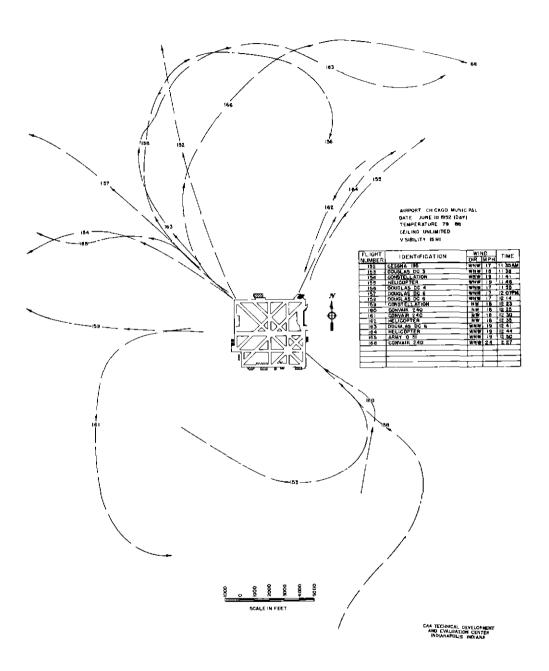


Fig 102 Typical Flight Paths in the Vicinity of Airports

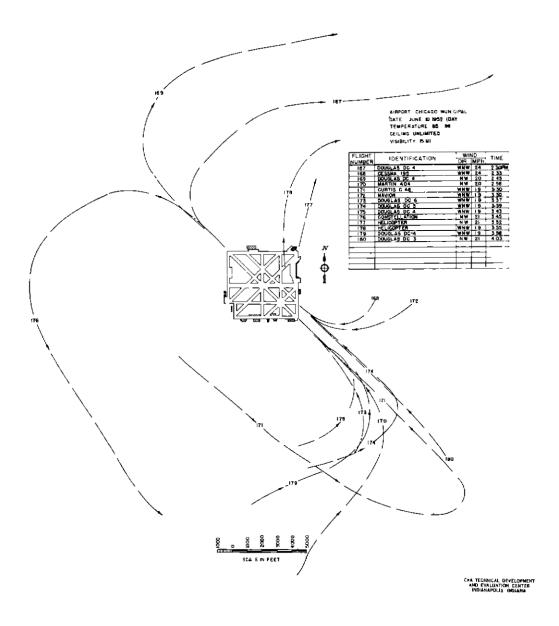


Fig 103 Typical Flight Paths in the Vicinity of Airports

Fig 104 Typical Flight Paths in the Vicinity of Airports

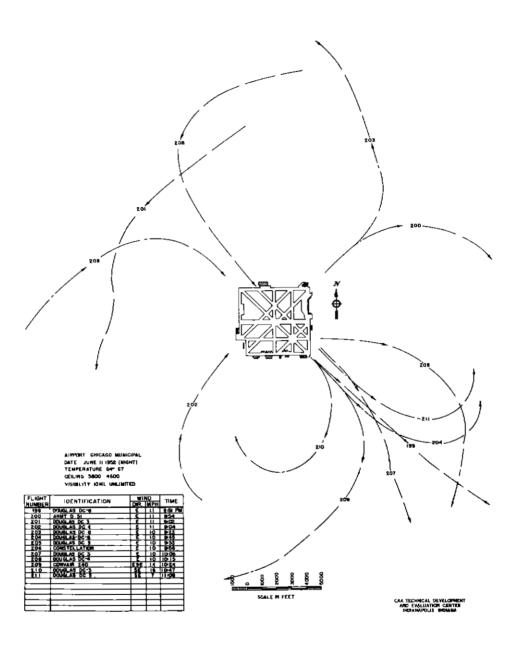


Fig 105 Typical Flight Paths in the Vicinity of Airports

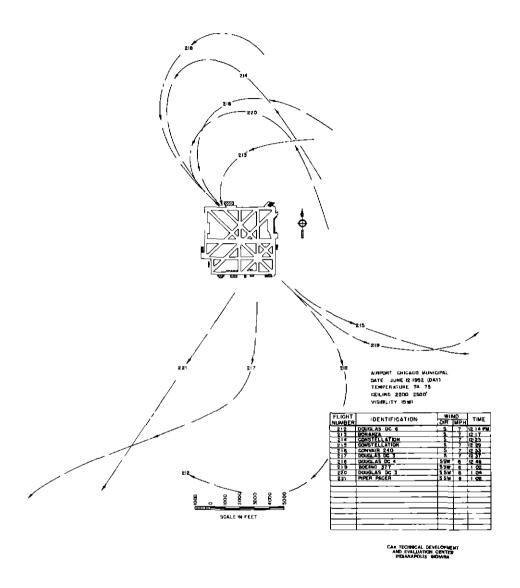


Fig 106 Typical Flight Paths in the Vicinity of Airports

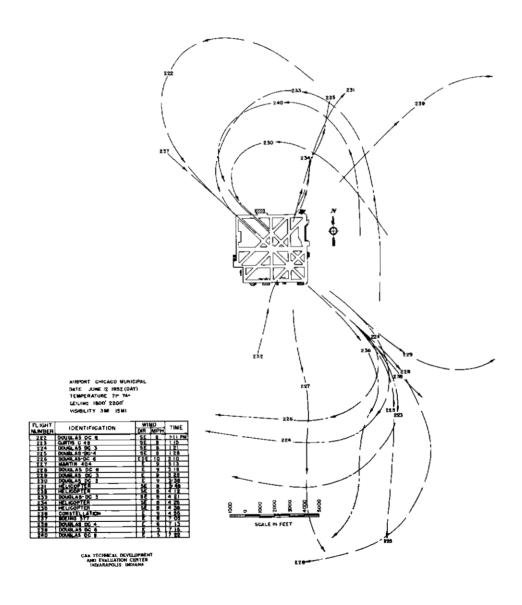


Fig 107 Typical Flight Paths in the Vicinity of Airports

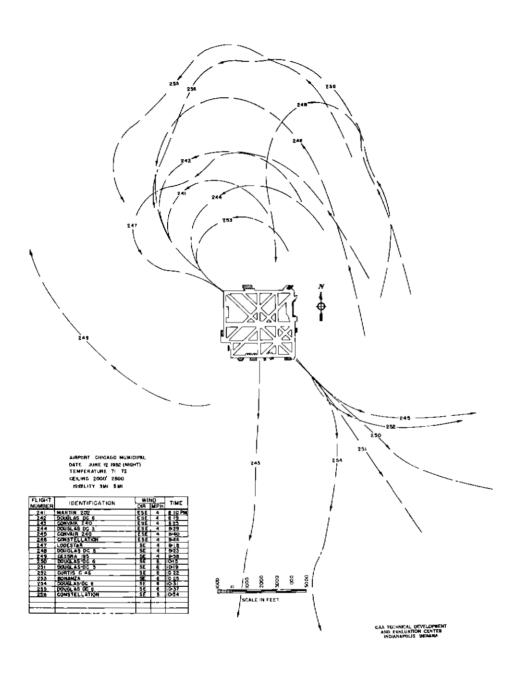


Fig 108 Typical Flight Paths in the Vicinity of Airports

Fig 109 Typical Flight-Path Recording Station

Fig 110 Birmingham Municipal Airport